數學(xué)是一切科學(xué)的基礎,可以說(shuō)人類(lèi)的每一次重大進(jìn)步背后都是數學(xué)在后面強有力的支撐。
第一次工業(yè)革命,人類(lèi)發(fā)明了蒸汽機,沒(méi)有數學(xué)又哪里會(huì )有現在先進(jìn)的汽車(chē)自動(dòng)化生產(chǎn)線(xiàn)。現在的信息化革命,沒(méi)有數學(xué),又哪里使信息可以如此快速的交換。
數學(xué)是一種工具學(xué)科,是學(xué)習其他學(xué)科的基礎。往往數學(xué)上的突破,會(huì )帶動(dòng)很多其他學(xué)科的重大突破。
一、如何學(xué)好數學(xué):1、掌握數學(xué)運算 運算是學(xué)好數學(xué)的基本功。初中階段是培養數學(xué)運算能力的黃金時(shí)期,初中代數的主要內容都和運算有關(guān),如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。
初中運算能力不過(guò)關(guān),會(huì )直接影響高中數學(xué)的學(xué)習。在面對復雜運算的時(shí)候,常常要注意以下兩點(diǎn):①情緒穩定,算理明確,過(guò)程合理,速度均勻,結果準確;②要自信,爭取一次做對;慢一點(diǎn),想清楚再寫(xiě);少心算,少跳步,草稿紙上也要寫(xiě)清楚。
2、學(xué)習數學(xué)基礎知識 理解和記憶數學(xué)基礎知識是學(xué)好數學(xué)的前提。理解就是用自己的話(huà)去解釋事物的意義,同一個(gè)數學(xué)概念,在不同學(xué)生的頭腦中存在的形態(tài)是不一樣的。
所以理解是個(gè)體對外部或內部信息進(jìn)行主動(dòng)的再加工過(guò)程,是一種創(chuàng )造性的“勞動(dòng)”。理解的標準是“準確”、“簡(jiǎn)單”和“全面”。
“準確”就是要抓住事物的本質(zhì);“簡(jiǎn)單”就是深入淺出、言簡(jiǎn)意賅;“全面”則是“既見(jiàn)樹(shù)木,又見(jiàn)森林”,不重不漏。對數學(xué)基礎知識的理解可以分為兩個(gè)層面:一是知識的形成過(guò)程和表述;二是知識的引申及其蘊涵的數學(xué)思想方法和數學(xué)思維方法。
記憶是個(gè)體對其經(jīng)驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。借助關(guān)鍵詞或提示語(yǔ)嘗試回憶的方法是一種比較有效的記憶方法,比如,看到“拋物線(xiàn)”三個(gè)字,你就會(huì )想到:拋物線(xiàn)的定義是什么?標準方程是什么?拋物線(xiàn)有幾個(gè)方面的性質(zhì)?關(guān)于拋物線(xiàn)有哪些典型的數學(xué)問(wèn)題?不妨先寫(xiě)下所想到的內容,再去查找、對照,這樣印象就會(huì )更加深刻。
另外,在數學(xué)學(xué)習中,要把記憶和推理緊密結合起來(lái),比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時(shí),掌握推導公式的方法,就能有效地防止遺忘。3、學(xué)會(huì )數學(xué)解題 學(xué)數學(xué)沒(méi)有捷徑可走,保證做題的數量和質(zhì)量是學(xué)好數學(xué)的必由之路。
保證數量就是①選準一本與教材同步的輔導書(shū)或練習冊。②做完一節的全部練習后,對照答案進(jìn)行批改。
千萬(wàn)別做一道對一道的答案,因為這樣會(huì )造成思維中斷和對答案的依賴(lài)心理;先易后難,遇到不會(huì )的題一定要先跳過(guò)去,以平穩的速度過(guò)一遍所有題目,先徹底解決會(huì )做的題;不會(huì )的題過(guò)多時(shí),千萬(wàn)別急躁、泄氣,其實(shí)你認為困難的題,對其他人來(lái)講也是如此,只不過(guò)需要點(diǎn)時(shí)間和耐心;對于例題,有兩種處理方式:“先做后看”與“先看后測”。③選擇有思考價(jià)值的題,與同學(xué)、老師交流,并把心得記在自習本上。
④每天保證1小時(shí)左右的練習時(shí)間。保證質(zhì)量就是①題不在多,而在于精,學(xué)會(huì )“解剖麻雀”。
充分理解題意,注意對整個(gè)問(wèn)題的轉譯,深化對題中某個(gè)條件的認識;看看與哪些數學(xué)基礎知識相聯(lián)系,有沒(méi)有出現一些新的功能或用途?再現思維活動(dòng)經(jīng)過(guò),分析想法的產(chǎn)生及錯因的由來(lái),要求用口語(yǔ)化的語(yǔ)言真實(shí)地敘述自己的做題經(jīng)過(guò)和感想,想到什么就寫(xiě)什么,以便挖掘出一般的數學(xué)思想方法和數學(xué)思維方法;一題多解,一題多變,多元歸一。②落實(shí):不僅要落實(shí)思維過(guò)程,而且要落實(shí)解答過(guò)程。
③復習:“溫故而知新”,把一些比較“經(jīng)典”的題重做幾遍,把做錯的題當作一面“鏡子”進(jìn)行自我反思,也是一種高效率的、針對性較強的學(xué)習方法。4、培養數學(xué)思維 數學(xué)思維與哲學(xué)思想的融合是學(xué)好數學(xué)的高層次要求。
比如,數學(xué)思維方法都不是單獨存在的,都有其對立面,并且兩者能夠在解決問(wèn)題的過(guò)程中相互轉換、相互補充,如直覺(jué)與邏輯,發(fā)散與定向、宏觀(guān)與微觀(guān)、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺(jué)地轉向與其對立的另一種方法,或許就會(huì )有“山重水復疑無(wú)路,柳暗花明又一村”的感覺(jué)。比如,在一些數列問(wèn)題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。
應該說(shuō),領(lǐng)悟數學(xué)思維中的哲學(xué)思想和在哲學(xué)思想的指導下進(jìn)行數學(xué)思維,是提高學(xué)生數學(xué)素養、培養學(xué)生數學(xué)能力的重要方法。只要我們重視運算能力的培養,扎扎實(shí)實(shí)地掌握數學(xué)基礎知識,學(xué)會(huì )聰明地做題,并且能夠站到哲學(xué)的高度去反思自己的數學(xué)思維活動(dòng),就一定能把數學(xué)學(xué)好。
二、學(xué)數學(xué)的好處:鍛煉人的思維敏捷度啊學(xué)習數學(xué)可以鍛煉一個(gè)人的邏輯思維能力,數學(xué)是一門(mén)邏輯性很強的科目,能夠鍛煉一個(gè)人的思維邏輯。增強一個(gè)人的判斷能力,同時(shí)數學(xué)也是很多科目的基礎,許多問(wèn)題都是通過(guò)數學(xué)的方法去解決的。
有這樣一個(gè)傳說(shuō),一次,數學(xué)家歐基里德教一個(gè)學(xué)生學(xué)習某個(gè)定理。結束后這個(gè)年輕人問(wèn)歐基里德,他學(xué)了能得到什么好處。
歐基里德叫過(guò)一個(gè)奴隸,對他說(shuō):“給他3個(gè)奧波爾,他說(shuō)他學(xué)了東西要得到好處。”在數學(xué)還非常哲學(xué)化的古希臘,探究世界的本原、萬(wàn)物之道,而要得到什么“好處”,受。
數學(xué)是一切科學(xué)的基礎,可以說(shuō)人類(lèi)的每一次重大進(jìn)步背后都是數學(xué)在后面強有力的支撐。
第一次工業(yè)革命,人類(lèi)發(fā)明了蒸汽機,沒(méi)有數學(xué)又哪里會(huì )有現在先進(jìn)的汽車(chē)自動(dòng)化生產(chǎn)線(xiàn)。現在的信息化革命,沒(méi)有數學(xué),又哪里使信息可以如此快速的交換。
數學(xué)是一種工具學(xué)科,是學(xué)習其他學(xué)科的基礎。往往數學(xué)上的突破,會(huì )帶動(dòng)很多其他學(xué)科的重大突破。
一、如何學(xué)好數學(xué): 1、掌握數學(xué)運算運算是學(xué)好數學(xué)的基本功。初中階段是培養數學(xué)運算能力的黃金時(shí)期,初中代數的主要內容都和運算有關(guān),如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。
初中運算能力不過(guò)關(guān),會(huì )直接影響高中數學(xué)的學(xué)習。在面對復雜運算的時(shí)候,常常要注意以下兩點(diǎn):①情緒穩定,算理明確,過(guò)程合理,速度均勻,結果準確;②要自信,爭取一次做對;慢一點(diǎn),想清楚再寫(xiě);少心算,少跳步,草稿紙上也要寫(xiě)清楚。
2、學(xué)習數學(xué)基礎知識理解和記憶數學(xué)基礎知識是學(xué)好數學(xué)的前提。理解就是用自己的話(huà)去解釋事物的意義,同一個(gè)數學(xué)概念,在不同學(xué)生的頭腦中存在的形態(tài)是不一樣的。
所以理解是個(gè)體對外部或內部信息進(jìn)行主動(dòng)的再加工過(guò)程,是一種創(chuàng )造性的“勞動(dòng)”。理解的標準是“準確”、“簡(jiǎn)單”和“全面”。
“準確”就是要抓住事物的本質(zhì);“簡(jiǎn)單”就是深入淺出、言簡(jiǎn)意賅;“全面”則是“既見(jiàn)樹(shù)木,又見(jiàn)森林”,不重不漏。對數學(xué)基礎知識的理解可以分為兩個(gè)層面:一是知識的形成過(guò)程和表述;二是知識的引申及其蘊涵的數學(xué)思想方法和數學(xué)思維方法。
記憶是個(gè)體對其經(jīng)驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。借助關(guān)鍵詞或提示語(yǔ)嘗試回憶的方法是一種比較有效的記憶方法,比如,看到“拋物線(xiàn)”三個(gè)字,你就會(huì )想到:拋物線(xiàn)的定義是什么?標準方程是什么?拋物線(xiàn)有幾個(gè)方面的性質(zhì)?關(guān)于拋物線(xiàn)有哪些典型的數學(xué)問(wèn)題?不妨先寫(xiě)下所想到的內容,再去查找、對照,這樣印象就會(huì )更加深刻。
另外,在數學(xué)學(xué)習中,要把記憶和推理緊密結合起來(lái),比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時(shí),掌握推導公式的方法,就能有效地防止遺忘。3、學(xué)會(huì )數學(xué)解題學(xué)數學(xué)沒(méi)有捷徑可走,保證做題的數量和質(zhì)量是學(xué)好數學(xué)的必由之路。
保證數量就是①選準一本與教材同步的輔導書(shū)或練習冊。②做完一節的全部練習后,對照答案進(jìn)行批改。
千萬(wàn)別做一道對一道的答案,因為這樣會(huì )造成思維中斷和對答案的依賴(lài)心理;先易后難,遇到不會(huì )的題一定要先跳過(guò)去,以平穩的速度過(guò)一遍所有題目,先徹底解決會(huì )做的題;不會(huì )的題過(guò)多時(shí),千萬(wàn)別急躁、泄氣,其實(shí)你認為困難的題,對其他人來(lái)講也是如此,只不過(guò)需要點(diǎn)時(shí)間和耐心;對于例題,有兩種處理方式:“先做后看”與“先看后測”。③選擇有思考價(jià)值的題,與同學(xué)、老師交流,并把心得記在自習本上。
④每天保證1小時(shí)左右的練習時(shí)間。保證質(zhì)量就是①題不在多,而在于精,學(xué)會(huì )“解剖麻雀”。
充分理解題意,注意對整個(gè)問(wèn)題的轉譯,深化對題中某個(gè)條件的認識;看看與哪些數學(xué)基礎知識相聯(lián)系,有沒(méi)有出現一些新的功能或用途?再現思維活動(dòng)經(jīng)過(guò),分析想法的產(chǎn)生及錯因的由來(lái),要求用口語(yǔ)化的語(yǔ)言真實(shí)地敘述自己的做題經(jīng)過(guò)和感想,想到什么就寫(xiě)什么,以便挖掘出一般的數學(xué)思想方法和數學(xué)思維方法;一題多解,一題多變,多元歸一。②落實(shí):不僅要落實(shí)思維過(guò)程,而且要落實(shí)解答過(guò)程。
③復習:“溫故而知新”,把一些比較“經(jīng)典”的題重做幾遍,把做錯的題當作一面“鏡子”進(jìn)行自我反思,也是一種高效率的、針對性較強的學(xué)習方法。4、培養數學(xué)思維數學(xué)思維與哲學(xué)思想的融合是學(xué)好數學(xué)的高層次要求。
比如,數學(xué)思維方法都不是單獨存在的,都有其對立面,并且兩者能夠在解決問(wèn)題的過(guò)程中相互轉換、相互補充,如直覺(jué)與邏輯,發(fā)散與定向、宏觀(guān)與微觀(guān)、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺(jué)地轉向與其對立的另一種方法,或許就會(huì )有“山重水復疑無(wú)路,柳暗花明又一村”的感覺(jué)。比如,在一些數列問(wèn)題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。
應該說(shuō),領(lǐng)悟數學(xué)思維中的哲學(xué)思想和在哲學(xué)思想的指導下進(jìn)行數學(xué)思維,是提高學(xué)生數學(xué)素養、培養學(xué)生數學(xué)能力的重要方法。只要我們重視運算能力的培養,扎扎實(shí)實(shí)地掌握數學(xué)基礎知識,學(xué)會(huì )聰明地做題,并且能夠站到哲學(xué)的高度去反思自己的數學(xué)思維活動(dòng),就一定能把數學(xué)學(xué)好。
二、學(xué)數學(xué)的好處: 鍛煉人的思維敏捷度啊學(xué)習數學(xué)可以鍛煉一個(gè)人的邏輯思維能力,數學(xué)是一門(mén)邏輯性很強的科目,能夠鍛煉一個(gè)人的思維邏輯。增強一個(gè)人的判斷能力,同時(shí)數學(xué)也是很多科目的基礎,許多問(wèn)題都是通過(guò)數學(xué)的方法去解決的。
有這樣一個(gè)傳說(shuō),一次,數學(xué)家歐基里德教一個(gè)學(xué)生學(xué)習某個(gè)定理。結束后這個(gè)年輕人問(wèn)歐基里德,他學(xué)了能得到什么好處。
歐基里德叫過(guò)一個(gè)奴隸,對他說(shuō):“給他3個(gè)奧波爾,他說(shuō)他學(xué)了東西要得到好處。”在數學(xué)還非常哲學(xué)化的古希臘,探究世界的本原、萬(wàn)物之道,而要得到什么“好處”,受。
數學(xué)便是理科的基礎,如果數學(xué)不好的人,理科一定不好、
數學(xué)是研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。透過(guò)抽象化和邏輯推理的使用,
可以理解為人類(lèi)邏輯性訓練的必要途徑
數學(xué),作為人類(lèi)思維的表達形式,反映了人們積極進(jìn)取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀(guān)、分析和推理、共性和個(gè)性。雖然不同的傳統學(xué)派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來(lái)的努力,才構成了數學(xué)科學(xué)的生命力、可用性和它的崇高價(jià)值
今日,數學(xué)被使用在世界不同的領(lǐng)域上,包括科學(xué)、工程、醫學(xué)和經(jīng)濟學(xué)等。數學(xué)對這些領(lǐng)域的應用通常被稱(chēng)為應用數學(xué),有時(shí)亦會(huì )激起新的數學(xué)發(fā)現,并導致全新學(xué)科的發(fā)展。數學(xué)家也研究純數學(xué),也就是數學(xué)本身,而不以任何實(shí)際應用為目標。雖然許多以純數學(xué)開(kāi)始的研究,但之后會(huì )發(fā)現許多應用。
數學(xué)在人類(lèi)文明的發(fā)展中起著(zhù)非常重要的作用,數學(xué)推動(dòng)了重大的科學(xué)技術(shù)進(jìn)步。
但在歷史上, 限于技術(shù)條件,依據數學(xué)推理和推算所作的預見(jiàn),往往要多年之后才能實(shí)現。數學(xué)為人類(lèi)生產(chǎn)和生活 帶來(lái)的效益容易被忽視。
進(jìn)入二十世紀,尤其是到了二十世紀中葉以后,科學(xué)技術(shù)發(fā)展到這一步:數 學(xué)理論研究與實(shí)際應用之間的時(shí)間差已大大縮短,特別是當前,隨著(zhù)電腦應用的普及,信息的數字化 和信息通道的大規模聯(lián)網(wǎng),依據數學(xué)所作的創(chuàng )造設想已經(jīng)達到可即時(shí)試驗、即時(shí)實(shí)施的地步。數學(xué)技 術(shù)將是一種應用最廣泛、最直接、最及時(shí)、最富創(chuàng )造力和重要的實(shí)用技術(shù), 一、數學(xué)與科學(xué)技術(shù)進(jìn)步 二十世紀科學(xué)技術(shù)進(jìn)步給人類(lèi)生產(chǎn)和生活帶來(lái)的巨大變化確實(shí)令人贊嘆不已。
從遠古時(shí)代 起一直是人們幻想的“順風(fēng)耳”,“千里眼”,“空中飛行”和“飛向太空”都在這一世紀成為現實(shí)。回 顧二十世紀的重大科學(xué)技術(shù)進(jìn)步,以下幾個(gè)項目元疑是影響最大的,而數學(xué)的預見(jiàn)和推動(dòng)作用是 非常關(guān)鍵。
(1)先有了麥克斯韋方程人們從數學(xué)上論證了電磁波,其后赫茲才有可能做發(fā)射電磁波的實(shí) 驗,接著(zhù)才會(huì )有電磁波聲光信息傳遞技術(shù)的發(fā)展。 (2)愛(ài)因斯但相對論的質(zhì)能公式首先從數學(xué)上論證了原子反應將釋放出的巨大能量,預示了 原子能時(shí)代的來(lái)臨.隨后人們才在技術(shù)上實(shí)現了這一預見(jiàn),到了今天,原子能已成為發(fā)達國家電 力能源的主要組成部分。
(3)牛頓當年已經(jīng)通過(guò)數學(xué)計算預見(jiàn)了發(fā)射人造天體的可能性,差不多過(guò)了將近三個(gè)世紀, 人們才實(shí)現了這一預見(jiàn)。 (4)電子數字計算機的誕生和發(fā)展完全是在數學(xué)理論的指導下進(jìn)行的。
數學(xué)家圖靈和馮諾依 曼的研究對這一重大科學(xué)技術(shù)進(jìn)步起了關(guān)鍵性的推動(dòng)作用。 (5)遺傳與變異現象雖然早就為人們所注意。
生產(chǎn)和生活中也曾培養過(guò)動(dòng)植物新品種。遺傳 的機制卻很長(cháng)時(shí)間得不到合理解釋?zhuān)攀兰o60年代,孟德?tīng)栆越M合數學(xué)模型來(lái)解釋他通過(guò)長(cháng) 達8年的實(shí)驗觀(guān)察得到的遺傳統計資料,從而預見(jiàn)了遺傳基因的存在性。
多年以后,人們才發(fā)現 了遺傳基因的實(shí)際承載體,到了本世紀50年代沃森和克里發(fā)現了DNA分子的雙螺旋結構。這以 后,數學(xué)更深刻地進(jìn)入遺傳密碼的破譯研究。
數學(xué)是人類(lèi)理性思維的重要方式,數學(xué)模型,數學(xué)研究和數學(xué)推斷往往能作出先于具體經(jīng)驗 的預見(jiàn)。這種預見(jiàn)并非出于幻想而是出于對以數學(xué)方式表現出來(lái)的自然規律和必然性的認識,隨 著(zhù)科學(xué)技術(shù)的發(fā)展,數學(xué)、預見(jiàn)的精確性和可檢驗性日益顯示其重意義。
二、時(shí)代大潮的潮頭 我們面臨一個(gè)科學(xué)技術(shù)迅猛發(fā)展的時(shí)代。信息的數字化和信息的數學(xué)處理已經(jīng)成為幾乎所 有高科技項目共同的核心技術(shù)。
從事先設計、制定方案,到試驗探索、不斷改進(jìn),到指揮控制、具體 操作,處處倚重于數學(xué)技術(shù)。眾多新聞報道反映出這一時(shí)代大潮洶涌澎湃的勢頭。
下面列舉的僅 僅是其中一小部分。 (1)數學(xué)技術(shù)已經(jīng)成為工業(yè)新產(chǎn)品研制設計的重要關(guān)鍵技術(shù)。
1994年4月9日,被稱(chēng)為“百 分之百數字化確定”的波音777型飛機舉行盛大隆重的出廠(chǎng)典禮.在過(guò)去,進(jìn)行新機型設計,必須 對模型構件和樣機反復作強度試驗和空氣動(dòng)力學(xué)性。:試驗。
稍有不妥,就必須改變設計再來(lái)一輪 試驗。新機種的研制周期長(cháng)達十余年,消耗大量原材料和能源,采用了數學(xué)技術(shù)以后,所有的試驗 可以通過(guò)精確設定的數學(xué)模型在計算機中進(jìn)行,探索和修改都可以通過(guò)數學(xué)指令去實(shí)現。
新機種 的研制周期從十多年縮短到三年半,大幅度節約了原材料和能源。 (2)許多國家認識到,發(fā)展高清晰度電視是未來(lái)經(jīng)濟技術(shù)競爭的主戰場(chǎng)之一。
日本和美國都 投入大量資金和人力進(jìn)行有關(guān)研究,日本起步最早,但所研究的是模擬式的;美國雖然起步稍晚, 但所研究的是數字式的。經(jīng)過(guò)多年的較量,數字式研究以其高度優(yōu)越性取得關(guān)鍵性勝利。
1994年 2月24日《人民日報》報道:日本政府正式宣布,轉向研究數字式高清晰度電視,承認數字式因其 優(yōu)越性而得到世界多數國家贊同,很可能成為未來(lái)的國際標準。 應該指出,電視屏幕不僅是現代人們日常生活所不可缺少的,而且可能通過(guò)聯(lián)網(wǎng)成為信息傳 遞處理的工作面。
幾乎所有重要的工作崗位都將與之有關(guān)。數學(xué)技術(shù)在如此重要項目的激烈較量 中起了決定作用。
(3)199=年的海灣戰爭是一場(chǎng)現代高科技戰爭,其核心技術(shù)竟然也是數學(xué)技術(shù)。這一事實(shí)引 起人們不小的驚訝。
美國總結海灣戰爭經(jīng)驗得出結論是:“未來(lái)的戰場(chǎng)是數字化的戰爭”。干擾和失真是電磁波通信的一大難題。
早在六十年代太空開(kāi)發(fā)競爭的初期,美國施行。‘阿波羅登登月計劃時(shí),就已經(jīng)意識到:由于太空中過(guò)強的干擾,無(wú)論依靠怎樣精密的電子硬件設備 ,也 無(wú)法收到任何有用的信息,更不用說(shuō)操縱控制了,采用了信息數字化、糾錯編碼、數字濾波等一整套數學(xué)通訊技術(shù)和數學(xué)控制技術(shù)之后,送人登月的計劃才得以順利完成,二十年后,在海灣戰爭 中,多國部隊方面使用這一套技術(shù)把對方干擾得既聾又瞎,卻能讓自己方面的信息暢通無(wú)阻。
采 用精密酌數學(xué)技術(shù),可以在短短數十秒的時(shí)間內準確攔截對方發(fā)射的導彈,又可以引導對方發(fā)射 導彈準確擊中對方的目標。也正是這一套信息數字化的數學(xué)技術(shù)。
數學(xué)便是理科的基礎,如果數學(xué)不好的人,理科一定不好、
數學(xué)是研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。透過(guò)抽象化和邏輯推理的使用,
可以理解為人類(lèi)邏輯性訓練的必要途徑
數學(xué),作為人類(lèi)思維的表達形式,反映了人們積極進(jìn)取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀(guān)、分析和推理、共性和個(gè)性。雖然不同的傳統學(xué)派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來(lái)的努力,才構成了數學(xué)科學(xué)的生命力、可用性和它的崇高價(jià)值
今日,數學(xué)被使用在世界不同的領(lǐng)域上,包括科學(xué)、工程、醫學(xué)和經(jīng)濟學(xué)等。數學(xué)對這些領(lǐng)域的應用通常被稱(chēng)為應用數學(xué),有時(shí)亦會(huì )激起新的數學(xué)發(fā)現,并導致全新學(xué)科的發(fā)展。數學(xué)家也研究純數學(xué),也就是數學(xué)本身,而不以任何實(shí)際應用為目標。雖然許多以純數學(xué)開(kāi)始的研究,但之后會(huì )發(fā)現許多應用。
初中數學(xué)寶典,你知道學(xué)習數學(xué)最重要的是什么嗎?
在初中學(xué)習數學(xué)這們課程的時(shí)候很多的學(xué)生都是比較煩惱的,因為這們課程是非常難的,并且難點(diǎn)非常多,很多的學(xué)生在剛開(kāi)始學(xué)習的時(shí)候還可以更得上,但是過(guò)一段時(shí)間之后就會(huì )變得非常的吃力,那么你知道初中數學(xué)寶典是什么嗎?我們來(lái)了解一下吧!
復習筆記
初中數學(xué)寶典----復習
很多的學(xué)生在剛開(kāi)始的時(shí)候學(xué)習這們課程不費勁但是往后可能會(huì )學(xué)的非常吃力,其實(shí)這就是因為在學(xué)習后邊的內容時(shí)將之前的內容忘掉了,所以會(huì )導致學(xué)習比較吃力,所以現在就需要用到我們的初中數學(xué)寶典--復習.
在數學(xué)的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績(jì)才會(huì )提高,數學(xué)試題無(wú)論如何變化都離不開(kāi)最為基本的理論,因此我們要在自己的腦海中建立一個(gè)數學(xué)的知識樹(shù).
我們在復習數學(xué)的時(shí)候,一定要對基礎的知識進(jìn)行整理和回顧,數學(xué)是一個(gè)階梯式的課程,因此我們要建立起一個(gè)數學(xué)的知識樹(shù),我們要先在大腦中設想這棵知識樹(shù),然后找出自己的不足所在,在進(jìn)行針對性的回顧,對于那寫(xiě)容易搞混的知識點(diǎn),要進(jìn)行梳理并且做到完全的區分,最重要的一點(diǎn)是,我們應該多層次的去分析問(wèn)題,舉一反三,將重點(diǎn)放在我們的解題思路上.
數學(xué)的復習,要秉承一個(gè)原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點(diǎn),有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會(huì )給下面的試題留下很多的思考時(shí)間,使用各種方法來(lái)進(jìn)行解答.
在數學(xué)的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績(jì)才會(huì )提高,數學(xué)試題無(wú)論如何變化都離不開(kāi)最為基本的理論,因此在腦海中建立一個(gè)數學(xué)的知識樹(shù)是非常必要的,這可以更快速的幫助自己解題.
復習知識點(diǎn)
以上就是初中數學(xué)寶典的內容,當學(xué)習吃力的時(shí)候可以先復習一下之前的內容,當然這個(gè)時(shí)候之前記得筆記就可以用來(lái)復習了,這樣可以更好的幫助我們學(xué)習后期的內容,并且可以改善學(xué)習吃力的問(wèn)題.
初中數學(xué)寶典,你知道學(xué)習數學(xué)最重要的是什么嗎?
在初中學(xué)習數學(xué)這們課程的時(shí)候很多的學(xué)生都是比較煩惱的,因為這們課程是非常難的,并且難點(diǎn)非常多,很多的學(xué)生在剛開(kāi)始學(xué)習的時(shí)候還可以更得上,但是過(guò)一段時(shí)間之后就會(huì )變得非常的吃力,那么你知道初中數學(xué)寶典是什么嗎?我們來(lái)了解一下吧!
復習筆記
初中數學(xué)寶典----復習
很多的學(xué)生在剛開(kāi)始的時(shí)候學(xué)習這們課程不費勁但是往后可能會(huì )學(xué)的非常吃力,其實(shí)這就是因為在學(xué)習后邊的內容時(shí)將之前的內容忘掉了,所以會(huì )導致學(xué)習比較吃力,所以現在就需要用到我們的初中數學(xué)寶典--復習.
在數學(xué)的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績(jì)才會(huì )提高,數學(xué)試題無(wú)論如何變化都離不開(kāi)最為基本的理論,因此我們要在自己的腦海中建立一個(gè)數學(xué)的知識樹(shù).
我們在復習數學(xué)的時(shí)候,一定要對基礎的知識進(jìn)行整理和回顧,數學(xué)是一個(gè)階梯式的課程,因此我們要建立起一個(gè)數學(xué)的知識樹(shù),我們要先在大腦中設想這棵知識樹(shù),然后找出自己的不足所在,在進(jìn)行針對性的回顧,對于那寫(xiě)容易搞混的知識點(diǎn),要進(jìn)行梳理并且做到完全的區分,最重要的一點(diǎn)是,我們應該多層次的去分析問(wèn)題,舉一反三,將重點(diǎn)放在我們的解題思路上.
數學(xué)的復習,要秉承一個(gè)原則,那就是小題突破大題穩定,我們不可能在大題上做到突破但是在小題上可以做到這一點(diǎn),有意識的練習自己選擇題和填空題的答題速度,當然速度是在正確的情況下,這樣會(huì )給下面的試題留下很多的思考時(shí)間,使用各種方法來(lái)進(jìn)行解答.
在數學(xué)的復習上,我們一定要去研究解題的思路和解題的步驟,這樣我們的成績(jì)才會(huì )提高,數學(xué)試題無(wú)論如何變化都離不開(kāi)最為基本的理論,因此在腦海中建立一個(gè)數學(xué)的知識樹(shù)是非常必要的,這可以更快速的幫助自己解題.
復習知識點(diǎn)
以上就是初中數學(xué)寶典的內容,當學(xué)習吃力的時(shí)候可以先復習一下之前的內容,當然這個(gè)時(shí)候之前記得筆記就可以用來(lái)復習了,這樣可以更好的幫助我們學(xué)習后期的內容,并且可以改善學(xué)習吃力的問(wèn)題.
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:3.324秒