高中高一數學(xué)必修1各章知識點(diǎn)總結 第一章 集合與函數概念 一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性 說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。 (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法。 注意啊:常用數集及其記法: 非負整數集(即自然數集)記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R 關(guān)于“屬于”的概念 集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
①語(yǔ)言描述法:例:{不是直角三角形的三角形} ②數學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分類(lèi): 1.有限集 含有有限個(gè)元素的集合 2.無(wú)限集 含有無(wú)限個(gè)元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系(5≥5,且5≤5,則5=5) 實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同” 結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B ① 任何一個(gè)集合是它本身的子集。
AíA ②真子集:如果AíB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A) ③如果 AíB, BíC ,那么 AíC ④ 如果AíB 同時(shí) BíA 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。
記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A. 4、全集與補集 (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集) 記作: CSA 即 CSA ={x | x?S且 x?A} S CsA A (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U 二、函數的有關(guān)概念 1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域. 注意:2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;3 函數的定義域、值域要寫(xiě)成集合或區間的形式. 定義域補充 能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義. (又注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關(guān)系和值域 再注意:(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。
相同函數的判斷方法:①表達式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備) (見(jiàn)課本21頁(yè)相關(guān)例2) 值域補充 (。
高一數學(xué)必修1第一章知識點(diǎn)總結 一、集合有關(guān)概念1. 集合的含義2. 集合的中元素的三個(gè)特性:(1) 元素的確定性,(2) 元素的互異性,(3) 元素的無(wú)序性, 3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R1) 列舉法:{a,b,c……}2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}4) Venn圖:4、集合的分類(lèi):(1) 有限集 含有有限個(gè)元素的集合(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) 實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個(gè)集合是它本身的子集。A?A ②真子集:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④ 如果A?B 同時(shí) B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 三、集合的運算 運算類(lèi)型 交 集 并 集 補 集 定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作'A交B'),即A B={x|x A,且x B}. 由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作'A并B'),即A B ={x|x A,或x B}). 設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集) 記作 ,即 CSA= 韋 恩 圖 示 性 質(zhì) A A=A A Φ=Φ A B=B A A B A A B B A A=A A Φ=A A B=B A A B A A B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B) A (CuA)=U A (CuA)= Φ. 例題:1.下列四組對象,能構成集合的是 ( ) A某班所有高個(gè)子的學(xué)生 B著(zhù)名的藝術(shù)家 C一切很大的書(shū) D 倒數等于它自身的實(shí)數2.集合{a,b,c }的真子集共有 個(gè) 3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關(guān)系是 .4.設集合A= ,B= ,若A B,則 的取值范圍是 5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗,已知物理實(shí)驗做得正確得有40人,化學(xué)實(shí)驗做得正確得有31人,兩種實(shí)驗都做錯得有4人,則這兩種實(shí)驗都做對的有 人。6. 用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M= .7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函數的有關(guān)概念1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域. 注意:1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。
求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零, (7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.? 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2)2.值域 : 先考慮其定義域(1)觀(guān)察法 (2)配方法(3)代換法3. 函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上 . (2) 畫(huà)法 A、描點(diǎn)法:B、圖象變換法 常用變換方法有三種1) 平移變換2) 伸縮變換3) 對稱(chēng)變換4.區間的概念 (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間 (2)無(wú)窮區間 (3)區間的數軸表示.5.映射 一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B6.分段函數 (1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數 如果y=f(u)(u∈M),u=g(x)。
高中高一數學(xué)必修1各章知識點(diǎn)總結第一章 集合與函數概念一、集合有關(guān)概念1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}2.集合的表示方法:列舉法與描述法。注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R關(guān)于“屬于”的概念集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
①語(yǔ)言描述法:例:{不是直角三角形的三角形}②數學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分類(lèi):1.有限集 含有有限個(gè)元素的集合2.無(wú)限集 含有無(wú)限個(gè)元素的集合3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同”結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B① 任何一個(gè)集合是它本身的子集。
AíA②真子集:如果AíB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)③如果 AíB, BíC ,那么 AíC④ 如果AíB 同時(shí) BíA 那么A=B3. 不含任何元素的集合叫做空集,記為Φ規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的運算1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。
記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集與補集(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)記作: CSA 即 CSA ={x | x?S且 x?A}SCsAA(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函數的有關(guān)概念1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.注意:2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;3 函數的定義域、值域要寫(xiě)成集合或區間的形式.定義域補充能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開(kāi)方數不小于零; (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.(又注意:求出不等式組的解集即為函數的定義域。)構成函數的三要素:定義域、對應關(guān)系和值域再注意:(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。
相同函數的判斷方法:①表達式相同;②定義域一致 (兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2。
不好意思我不知道是必修幾了不過(guò)這是必修一到必修五的望采納~一、集合與簡(jiǎn)易邏輯:一、理解集合中的有關(guān)概念(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號=表示。(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實(shí)數集。
(4)集合的表示法:列舉法,描述法,韋恩圖。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函數一、映射與函數:(1)映射的概念:(2)一一映射:(3)函數的概念:二、函數的三要素:相同函數的判斷方法:①對應法則;②定義域(兩點(diǎn)必須同時(shí)具備)(1)函數解析式的求法:①定義法(拼湊):②換元法:③待定系數法:④賦值法:(2)函數定義域的求法:①含參問(wèn)題的定義域要分類(lèi)討論;②對于實(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:①配方法:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如:的形式;②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;④換元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;⑤三角有。不好意思我不知道是必修幾了不過(guò)這是必修一到必修五的望采納~一、集合與簡(jiǎn)易邏輯:一、理解集合中的有關(guān)概念(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號=表示。(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實(shí)數集。
(4)集合的表示法:列舉法,描述法,韋恩圖。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函數一、映射與函數:(1)映射的概念:(2)一一映射:(3)函數的概念:二、函數的三要素:相同函數的判斷方法:①對應法則;②定義域(兩點(diǎn)必須同時(shí)具備)(1)函數解析式的求法:①定義法(拼湊):②換元法:③待定系數法:④賦值法:(2)函數定義域的求法:①含參問(wèn)題的定義域要分類(lèi)討論;②對于實(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:①配方法:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如:的形式;②逆求法(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;④換元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;⑥基本不等式法:轉化成型如:,利用平均值不等式公式來(lái)求值域;⑦單調性法:函數為單調函數,可根據函數的單調性求值域。⑧數形結合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
三、函數的性質(zhì):函數的單調性、奇偶性、周期性單調性:定義:注意定義是相對與某個(gè)具體的區間而言。判定方法有:定義法(作差比較和作商比較)導數法(適用于多項式函數)復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x)與f(-x)的關(guān)系。
f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。判別方法:定義法,圖像法,復合函數法應用:把函數值進(jìn)行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期.應用:求函數值和某個(gè)區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)平移變換y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系數,要先提取系數。
如:把函數y=f(2x)經(jīng)過(guò)平移得到函數y=f(2x+4)的圖象。(ⅱ)會(huì )結合向量的平移,理解按照向量(m,n)平移的意義。
對稱(chēng)變換y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng)y=f(x)→y=-f(x),關(guān)于x軸對稱(chēng)y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng)y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱(chēng)。(注意:它是一個(gè)偶函數)伸縮變換:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個(gè)重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關(guān)于直線(xiàn)x=a對稱(chēng);五、反函數:(1)定義:(2)函數存在反函數的條件:(3)互為反函數的定義域與值域的關(guān)系:(4)求反函數的步驟:①將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫(xiě)出反函數的定義域(即的值域)。(5)互為反函數的圖象間的關(guān)系:(6)原函數與反函數具有相同的單調性;(7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。
七、常用的初等函數:(1)一元一次函數:(2)一元二次函數:一般式兩點(diǎn)式頂點(diǎn)式二次函數求最值問(wèn)題:首先要采用配方法,化為一般式,有三個(gè)類(lèi)型題型:(1)頂點(diǎn)固定,區間也固定。如:(2)頂。
高一數學(xué)知識總結 必修一 一、集合 一、集合有關(guān)概念1. 集合的含義2. 集合的中元素的三個(gè)特性:(1) 元素的確定性如:世界上最高的山(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3) 元素的無(wú)序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數集及其記法:非負整數集(即自然數集) 記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R1) 列舉法:{a,b,c……}2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}4) Venn圖:4、集合的分類(lèi):(1) 有限集 含有有限個(gè)元素的集合(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) 實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個(gè)集合是它本身的子集。A?A ②真子集:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④ 如果A?B 同時(shí) B?A 那么A=B3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 二、函數1、函數定義域、值域求法綜合2.、函數奇偶性與單調性問(wèn)題的解題策略 3、恒成立問(wèn)題的求解策略 4、反函數的幾種題型及方法5、二次函數根的問(wèn)題——一題多解&指數函數y=a^x a^a*a^b=a^a+b(a>0,a、b屬于Q)(a^a)^b=a^ab(a>0,a、b屬于Q)(ab)^a=a^a*b^a(a>0,a、b屬于Q) 指數函數對稱(chēng)規律:1、函數y=a^x與y=a^-x關(guān)于y軸對稱(chēng)2、函數y=a^x與y=-a^x關(guān)于x軸對稱(chēng)3、函數y=a^x與y=-a^-x關(guān)于坐標原點(diǎn)對稱(chēng) 冪函數y=x^a(a屬于R)1、冪函數定義:一般地,形如 的函數稱(chēng)為冪函數,其中 為常數.2、冪函數性質(zhì)歸納. (1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);(2) 時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間 上是增函數.特別地,當 時(shí),冪函數的圖象下凸;當 時(shí),冪函數的圖象上凸;(3) 時(shí),冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸. 方程的根與函數的零點(diǎn)1、函數零點(diǎn)的概念:對于函數 ,把使 成立的實(shí)數 叫做函數 的零點(diǎn)。2、函數零點(diǎn)的意義:函數 的零點(diǎn)就是方程 實(shí)數根,亦即函數 的圖象與 軸交點(diǎn)的橫坐標。
即:方程 有實(shí)數根 函數 的圖象與 軸有交點(diǎn) 函數 有零點(diǎn).3、函數零點(diǎn)的求法:○1 (代數法)求方程 的實(shí)數根;○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).4、二次函數的零點(diǎn):二次函數 . (1)△>0,方程 有兩不等實(shí)根,二次函數的圖象與 軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn). (2)△=0,方程 有兩相等實(shí)根,二次函數的圖象與 軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn). (3)△三、平面向量 已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點(diǎn)的對角線(xiàn)OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。向量的加法滿(mǎn)足所有的加法運算定律。
數乘運算 實(shí)數λ與向量a的積是一個(gè)向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時(shí),λa的方向和a的方向相同,當λ < 0時(shí),λa的方向和a的方向相反,當λ = 0時(shí),λa = 0。設λ、μ是實(shí)數,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱(chēng)線(xiàn)性運算。向量的數量積 已知兩個(gè)非零向量a、b,那么|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。
零向量與任意向量的數量積為0。a?b的幾何意義:數量積a?b等于a的長(cháng)度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個(gè)向量的數量積等于它們對應坐標的乘積的和。四、三角函數1、善于用“1“巧解題2、三角問(wèn)題的非三角化解題策略3、三角函數有界性求最值解題方法4、三角函數向量綜合題例析5、三角函數中的數學(xué)思想方法15、正弦函數、余弦函數和正切函數的圖象與性質(zhì):圖象 定義域 值域 最值 當 時(shí), ;當 時(shí), . 當 時(shí), ;當 時(shí), . 既無(wú)最大值也無(wú)最小值 周期性 奇偶性 奇函數 偶函數 奇函數 單調性 在 上是增函數;在 上是減函數. 在 上是增函數;在 上是減函數. 在 上是增函數. 對稱(chēng)性 對稱(chēng)中心 對稱(chēng)軸 對稱(chēng)中心 對稱(chēng)軸 對稱(chēng)中心 無(wú)對稱(chēng)軸 必修四 角 的頂點(diǎn)與原點(diǎn)重合,角的始邊與 軸的。
高一數學(xué)必修1知識點(diǎn) 函數 高中數學(xué)必修4知識點(diǎn) 2、角 的頂點(diǎn)與原點(diǎn)重合,角的始邊與 軸的非負半軸重合,終邊落在第幾象限,則稱(chēng) 為第幾象限角. 第一象限角的集合為 第二象限角的集合為 第三象限角的集合為 第四象限角的集合為 終邊在 軸上的角的集合為 終邊在 軸上的角的集合為 終邊在坐標軸上的角的集合為 3、與角 終邊相同的角的集合為 4、已知 是第幾象限角,確定 所在象限的方法:先把各象限均分 等份,再從 軸的正半軸的上方起,依次將各區域標上一、二、三、四,則 原來(lái)是第幾象限對應的標號即為 終邊所落在的區域. 5、長(cháng)度等于半徑長(cháng)的弧所對的圓心角叫做 弧度. 6、半徑為 的圓的圓心角 所對弧的長(cháng)為 ,則角 的弧度數的絕對值是 . 7、弧度制與角度制的換算公式: , , . 8、若扇形的圓心角為 ,半徑為 ,弧長(cháng)為 ,周長(cháng)為 ,面積為 ,則 , , . 9、設 是一個(gè)任意大小的角, 的終邊上任意一點(diǎn) 的坐標是 ,它與原點(diǎn)的距離是 ,則 , , . 10、三角函數在各象限的符號:第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正. Pv x y A O M T 11、三角函數線(xiàn): , , . 12、同角三角函數的基本關(guān)系: ; . 13、三角函數的誘導公式: , , . , , . , , . , , . 口訣:函數名稱(chēng)不變,符號看象限. , . , . 口訣:正弦與余弦互換,符號看象限. 14、函數 的圖象上所有點(diǎn)向左(右)平移 個(gè)單位長(cháng)度,得到函數 的圖象;再將函數 的圖象上所有點(diǎn)的橫坐標伸長(cháng)(縮短)到原來(lái)的 倍(縱坐標不變),得到函數 的圖象;再將函數 的圖象上所有點(diǎn)的縱坐標伸長(cháng)(縮短)到原來(lái)的 倍(橫坐標不變),得到函數 的圖象. 函數 的圖象上所有點(diǎn)的橫坐標伸長(cháng)(縮短)到原來(lái)的 倍(縱坐標不變),得到函數 的圖象;再將函數 的圖象上所有點(diǎn)向左(右)平移 個(gè)單位長(cháng)度,得到函數 的圖象;再將函數 的圖象上所有點(diǎn)的縱坐標伸長(cháng)(縮短)到原來(lái)的 倍(橫坐標不變),得到函數 的圖象. 函數 的性質(zhì): ①振幅: ;②周期: ;③頻率: ;④相位: ;⑤初相: . 函數 ,當 時(shí),取得最小值為 ;當 時(shí),取得最大值為 ,則 , , . 15、正弦函數、余弦函數和正切函數的圖象與性質(zhì): 函 數 性 質(zhì) 圖象 定義域 值域 最值 當 時(shí), ;當 時(shí), . 當 時(shí), ;當 時(shí), . 既無(wú)最大值也無(wú)最小值 周期性 奇偶性 奇函數 偶函數 奇函數 單調性 在 上是增函數;在 上是減函數. 在 上是增函數;在 上是減函數. 在 上是增函數. 對稱(chēng)性 對稱(chēng)中心 對稱(chēng)軸 對稱(chēng)中心 對稱(chēng)軸 對稱(chēng)中心 無(wú)對稱(chēng)軸 16、向量:既有大小,又有方向的量. 數量:只有大小,沒(méi)有方向的量. 有向線(xiàn)段的三要素:起點(diǎn)、方向、長(cháng)度. 零向量:長(cháng)度為 的向量. 單位向量:長(cháng)度等于 個(gè)單位的向量. 平行向量(共線(xiàn)向量):方向相同或相反的非零向量.零向量與任一向量平行. 相等向量:長(cháng)度相等且方向相同的向量. 17、向量加法運算: ⑴三角形法則的特點(diǎn):首尾相連. ⑵平行四邊形法則的特點(diǎn):共起點(diǎn). ⑶三角形不等式: . ⑷運算性質(zhì):①交換律: ;②結合律: ;③ . ⑸坐標運算:設 , ,則 . 18、向量減法運算: ⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量. ⑵坐標運算:設 , ,則 . 設 、兩點(diǎn)的坐標分別為 , ,則 . 19、向量數乘運算: ⑴實(shí)數 與向量 的積是一個(gè)向量的運算叫做向量的數乘,記作 . ① ; ②當 時(shí), 的方向與 的方向相同;當 時(shí), 的方向與 的方向相反;當 時(shí), . ⑵運算律:① ;② ;③ . ⑶坐標運算:設 ,則 . 20、向量共線(xiàn)定理:向量 與 共線(xiàn),當且僅當有唯一一個(gè)實(shí)數 ,使 . 設 , ,其中 ,則當且僅當 時(shí),向量 、共線(xiàn). 21、平面向量基本定理:如果 、是同一平面內的兩個(gè)不共線(xiàn)向量,那么對于這一平面內的任意向量 ,有且只有一對實(shí)數 、,使 .(不共線(xiàn)的向量 、作為這一平面內所有向量的一組基底) 22、分點(diǎn)坐標公式:設點(diǎn) 是線(xiàn)段 上的一點(diǎn), 、的坐標分別是 , ,當 時(shí),點(diǎn) 的坐標是 . 23、平面向量的數量積: ⑴ .零向量與任一向量的數量積為 . ⑵性質(zhì):設 和 都是非零向量,則① .②當 與 同向時(shí), ;當 與 反向時(shí), ; 或 .③ . ⑶運算律:① ;② ;③ . ⑷坐標運算:設兩個(gè)非零向量 , ,則 . 若 ,則 ,或 . 設 , ,則 . 設 、都是非零向量, , , 是 與 的夾角,則 . 24、兩角和與差的正弦、余弦和正切公式: ⑴ ; ⑵ ; ⑶ ; ⑷ ; ⑸ ( ); ⑹ ( ). 25、二倍角的正弦、余弦和正切公式: ⑴ . ⑵ ( , ). ⑶ . 26、,其中 . 必修1 的出不來(lái)了。
必修一
第一章 集合與函數概念
一 總體設計
二 教科書(shū)分析
1.1 集合
1.2 函數及其表示
1.3 函數的基本性質(zhì)
實(shí)習作業(yè)
三 自我檢測題
四 拓展資源
第二章 基本初等函數(Ⅰ)
一 總體設計
二 教科書(shū)分析
2.1 指數函數
2.2 對數函數
2.3 冪函數
三 自我檢測題
四 拓展資源
第三章 函數的應用
一 總體設計
二 教科書(shū)分析
3.1 函數與方程
3.2 函數模型及其應用
三 自我檢測題
四 拓展資源
有五個(gè) 一 集合與簡(jiǎn)易邏輯 集合具有四個(gè)性質(zhì) 廣泛性 集合的元素什么都可以 確定性 集合中的元素必須是確定的,比如說(shuō)是好學(xué)生就不具有這種性質(zhì),因為它的概念是模糊不清的 互異性 集合中的元素必須是互不相等的,一個(gè)元素不能重復出現 無(wú)序性 集合中的元素與順序無(wú)關(guān) 二 函數 這是個(gè)重點(diǎn),但是說(shuō)起來(lái)也不好說(shuō),要作專(zhuān)題訓練,比如說(shuō)二次函數,指數對數函數等等做這一類(lèi)型題的時(shí)候,要掌握幾個(gè)函數思想如 構造函數 函數與方程結合 對稱(chēng)思想,換元等等 三 數列 這也是個(gè)比較重要的題型,做體的時(shí)候要有整體思想,整體代換,等比等差要分開(kāi)來(lái),也要注意聯(lián)系,這樣才能做好,注意觀(guān)察數列的形式判斷是什么數列,還要掌握求數列通向公式的幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等 四 三角函數 三角函數不是考試題型,只是個(gè)應用的知識點(diǎn),所以只要記熟特殊角的三角函數值和一些重要的定理就行 五 平面向量 這是個(gè)比較抽象的把幾何與代數結合起來(lái)的重難點(diǎn),結體的時(shí)候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見(jiàn)的題型多,結體的時(shí)候就有思路,能夠把問(wèn)題簡(jiǎn)單化,有利于提高做題效率 高一的數學(xué)只是入門(mén),只要把基礎的掌握了,做題就沒(méi)什么大問(wèn)題了,數學(xué)就可以上130。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:2.697秒