常見(jiàn)的初中數學(xué)公式 1 過(guò)兩點(diǎn)有且只有一條直線(xiàn) 2 兩點(diǎn)之間線(xiàn)段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直 6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短 7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行 8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行 9 同位角相等,兩直線(xiàn)平行 10 內錯角相等,兩直線(xiàn)平行 11 同旁?xún)冉腔パa,兩直線(xiàn)平行 12兩直線(xiàn)平行,同位角相等 13 兩直線(xiàn)平行,內錯角相等 14 兩直線(xiàn)平行,同旁?xún)冉腔パa 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內角和定理 三角形三個(gè)內角的和等于180° 18 推論1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等 27 定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上 29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半 39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上 41 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn) 44定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上 45逆定理 如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng) 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內角和等于360° 49四邊形的外角和等于360° 50多邊形內角和定理 n邊形的內角的和等于(n-2)*180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線(xiàn)間的平行線(xiàn)段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對角線(xiàn)互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線(xiàn)互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對角線(xiàn)相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對角線(xiàn)相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角 66菱形面積=對角線(xiàn)乘積的一半,即S=(a*b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線(xiàn)互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角 71定理1 關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分 73逆定理 如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng) 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對角線(xiàn)相等 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對角線(xiàn)相等的梯形是等腰梯形 78平行線(xiàn)等分線(xiàn)段定理 如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段 相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平。
人教版初三上冊數學(xué)學(xué)習內容及知識點(diǎn)如下: 一、分式 1、同底數冪相除,底數不變,指數相減。
am an=am-n(a 0) 2、兩個(gè)單項式相除,只要將系數及同底數冪分別相除。 3、形如 (A、B是整式,且B中含有字母,B 0)的式子叫做分式。
=0(A=0,B 0)。 4、分式的分子和分母都乘以(或除以)同一個(gè)不等于零的整式,分式的值不變。
約分后,分子與分母不再有公因式的分式稱(chēng)為最簡(jiǎn)分式。分式運算的結果一定要是最簡(jiǎn)。
5、最簡(jiǎn)公分母是各分母所有因式的最高次冪的積。 6、在將分式方程變形為整式方程時(shí),方程兩邊同乘以一個(gè)含未知數的整式,并約去分母,有時(shí)可能產(chǎn)生不適合原方程的解(或根),這種根稱(chēng)為增根。
因此,在解分式方程時(shí)必須進(jìn)行檢驗。 7、任何不等于零的數的零次冪都等于1。
a0=1(a 0) 8、任何不等于零的數的-n(n為正整數)次冪,等于這個(gè)數的n次冪的倒數。a-n=( )n= (a 9、用科學(xué)記數法表示一些絕對值較小的數,即將它們表示成a 的形式,其中n是正整數,1≤ 0時(shí)方程有兩個(gè)不相等的實(shí)數根;(2) =0時(shí)方程有兩不相等的實(shí)數根;(3)。
第一章 數與式
1 正數與負數
2 有理數和數軸
3 相反數與絕對值
4 a+b=+-(|a|+|b|)
5 a+b=b+a,(a+b)+c=a+(b+c)
6 a-b=a+(-b)
7 ab=+-|a|·|b|,a·0=0,ab=ba,(ab)c=a(bc),(a+b)c=ac+bc
8 a*b=a*1/b(b=0)
9 a·a……a=an(n為正整數)
10 a*10n
11 單項式:axmyn
12 多項式:A+B+C
13 合并同類(lèi)項:axn+-bxn=(a+-b)xn
14 am·an=am+n(m,n都是正整數)
15 (am)n=amn(m,n都是正整數)
16 (a·b)n=anbn(n為正整數)
17 單項式乘法則
18 單項式與多項式相乘法則
19 多項式相乘法則
20 (a+b)(a-b)=a2-b2
21 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2
22 am/an=am-n(a=0,m,n都是正整數,且M>n)
23 單項式除以單項式法則
24 多項式除以單項式的法則
25 ma+mb+mc=m(a+b+c)
……
第二章 方程和不等式
第三章 函數及其圖象
第四章 三角形
第五章 四邊形
第六章 圓形
第七章 統計與概率初步
一、基本知識㈠、數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數數軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
②任何一個(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。
在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。④數軸上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。
正數大于0,負數小于0,正數大于負數。絕對值:①在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
③一個(gè)數與0相加不變。減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。
③乘積為1的兩個(gè)有理數互為倒數。除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。
②0不能作除數。乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。2、實(shí)數無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數平方根:①如果一個(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
②如果一個(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。③一個(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
④求一個(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。立方根:①如果一個(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:①實(shí)數分有理數和無(wú)理數。②在實(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
③每一個(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。3、代數式代數式:?jiǎn)为氁粋€(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項。②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。
③在合并同類(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。4、整式與分式整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
②一個(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。③一個(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。公式兩條:平方差公式/完全平方公式整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
②多項式除以單項式,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。
②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。加減法:①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱(chēng)為原方程的增根。B、方程與不等式1、方程與方程組一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。
適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)。
初中數學(xué)基礎知識大全:直角坐標系與點(diǎn)的位置1. 直角坐標系中,點(diǎn)A(3,0)在y軸上。
2. 直角坐標系中,x軸上的任意點(diǎn)的橫坐標為0。3. 直角坐標系中,點(diǎn)A(1,1)在第一象限。
4. 直角坐標系中,點(diǎn)A(-1,1)在第二象限。5. 直角坐標系中,點(diǎn)A(-1,-1)在第三象限。
6. 直角坐標系中,點(diǎn)A(1,-1)在第四象限。初中數學(xué)基礎知識大全:特殊三角函數值1.cos30°=√3/22.sin2 60°+ cos2 60°= 13.2sin30°+ tan45°= 24.tan45°= 15.cos60°+ sin30°= 1初中數學(xué)基礎知識大全:圓的基本性質(zhì)1.半圓或直徑所對的圓周角是直角。
2.任意一個(gè)三角形一定有一個(gè)外接圓.3.在同一平面內,到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等于圓心角的一半。6.同圓或等圓的半徑相等。
7.過(guò)三個(gè)點(diǎn)一定可以作一個(gè)圓。8.長(cháng)度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。10.經(jīng)過(guò)圓心平分弦的直徑垂直于弦。
去百度文庫,查看完整內容>
內容來(lái)自用戶(hù):扭擺的青春
第一章數與式
考點(diǎn)一、概念及分類(lèi)1、實(shí)數按定義分類(lèi)正整數
整數零
有理數負整數實(shí)數正分數
分數有限小數和無(wú)限循環(huán)小數
負分數
正無(wú)理數
無(wú)理數無(wú)限不循環(huán)小數
負無(wú)理數
2、實(shí)數按正負分類(lèi)
正整數
正有理數
正實(shí)數正分數
正無(wú)理數
實(shí)數零負整數
負有理數
負分數
負實(shí)數
負無(wú)理數
在理解無(wú)理數時(shí),要抓住“無(wú)限不循環(huán)”這一本質(zhì),歸納起來(lái)有四類(lèi):
(1)開(kāi)方開(kāi)不盡的數,如等;
(2)有特定意義的數,如圓周率π,或化簡(jiǎn)后含有π的數,如+8等;
(3)有特定結構的數,如0.1010010001…等,一定要注意后面要帶省略號;
(4)某些三角函數,如sin60o等
考點(diǎn)二、數軸、倒數、相反數、絕對值1、數軸定義:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸。對應:實(shí)數和數軸上的點(diǎn)是一一對應的關(guān)系。2、倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒(méi)有倒數。a的倒數為。3、相反數:如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。相反數等于本身的數是0,任何數都有相反數。a的相反數為-a。
4、絕對值
一個(gè)數的絕對值就是表示這個(gè)數的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a(4.考點(diǎn)三、因式分解(1((考點(diǎn)一、平面直角坐標系點(diǎn)(3如果自變量的取值范圍是反過(guò)來(lái),解一元二次方程(1一條線(xiàn)段可用它的端點(diǎn)的兩個(gè)大寫(xiě)字母
有理數的加法運算 同號兩數來(lái)相加,絕對值加不變號。
異號相加大減小,大數決定和符號。 互為相反數求和,結果是零須記好。
【注】“大”減“小”是指絕對值的大小。 有理數的減法運算 減正等于加負,減負等于加正。
有理數的乘法運算符號法則 同號得正異號負,一項為零積是零。 合并同類(lèi)項 說(shuō)起合并同類(lèi)項,法則千萬(wàn)不能忘。
只求系數代數和,字母指數留原樣。 去、添括號法則 去括號或添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。 括號前面是負號,去添括號都變號。
解方程 已知未知鬧分離,分離要靠移完成。 移加變減減變加,移乘變除除變乘。
平方差公式 兩數和乘兩數差,等于兩數平方差。 積化和差變兩項,完全平方不是它。
完全平方公式 二數和或差平方,展開(kāi)式它共三項。 首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結,先減后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。 解一元一次方程 先去分母再括號,移項變號要記牢。
同類(lèi)各項去合并,系數化“1”還沒(méi)好。 求得未知須檢驗,回代值等才算了。
解一元一次方程 先去分母再括號,移項合并同類(lèi)項。 系數化1還沒(méi)好,準確無(wú)誤不白忙。
因式分解與乘法 和差化積是乘法,乘法本身是運算。 積化和差是分解,因式分解非運算。
因式分解 兩式平方符號異,因式分解你別怕。 兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。 因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。 同正則正負就負,異則需添冪符號。
因式分解 一提二套三分組,十字相乘也上數。 四種方法都不行,拆項添項去重組。
重組無(wú)望試求根,換元或者算余數。 多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。 對癥下藥穩又準,連乘結果是基礎。
二次三項式的因式分解 先想完全平方式,十字相乘是其次。 兩種方法行不通,求根分解去嘗試。
比和比例 兩數相除也叫比,兩比相等叫比例。 外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。 同時(shí)交換內外項,便要稱(chēng)其為反比。
前后項和比后項,比值不變叫合比。 前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。 前項和比后項和,比值不變叫等比。
解比例 外項積等內項積,列出方程并解之。 求比值 由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。 消元也是好辦法,殊途同歸會(huì )變通。
正比例與反比例 商定變量成正比,積定變量成反比。 正比例與反比例 變化過(guò)程商一定,兩個(gè)變量成正比。
變化過(guò)程積一定,兩個(gè)變量成反比。 判斷四數成比例 四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。 判斷四式成比例 四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。 比例中項 成比例的四項中,外項相同會(huì )遇到。
有時(shí)內項會(huì )相同,比例中項少不了。 比例中項很重要,多種場(chǎng)合會(huì )碰到。
成比例的四項中,外項相同有不少。 有時(shí)內項會(huì )相同,比例中項出現了。
同數平方等異積,比例中項無(wú)處逃。 根式與無(wú)理式 表示方根代數式,都可稱(chēng)其為根式。
根式異于無(wú)理式,被開(kāi)方式無(wú)限制。 被開(kāi)方式有字母,才能稱(chēng)為無(wú)理式。
無(wú)理式都是根式,區分它們有標志。 被開(kāi)方式有字母,又可稱(chēng)為無(wú)理式。
求定義域 求定義域有講究,四項原則須留意。 負數不能開(kāi)平方,分母為零無(wú)意義。
指是分數底正數,數零沒(méi)有零次冪。 限制條件不唯一,滿(mǎn)足多個(gè)不等式。
求定義域要過(guò)關(guān),四項原則須注意。 負數不能開(kāi)平方,分母為零無(wú)意義。
分數指數底正數,數零沒(méi)有零次冪。 限制條件不唯一,不等式組求解集。
解一元一次不等式 先去分母再括號,移項合并同類(lèi)項。 系數化“1”有講究,同乘除負要變向。
先去分母再括號,移項別忘要變號。 同類(lèi)各項去合并,系數化“1”注意了。
同乘除正無(wú)防礙,同乘除負也變號。 解一元一次不等式組 大于頭來(lái)小于尾,大小不一中間找。
大大小小沒(méi)有解,四種情況全來(lái)了。 同向取兩邊,異向取中間。
中間無(wú)元素,無(wú)解便出現。 幼兒園小鬼當家,(同小相對取較小) 敬老院以老為榮,(同大就要取較大) 軍營(yíng)里沒(méi)老沒(méi)少。
(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,構造函數第二站。
判別式值若非負,曲線(xiàn)橫軸有交點(diǎn)。 a正開(kāi)口它向上,大于零則取兩邊。
代數式若小于零,解集交點(diǎn)數之間。 方程若無(wú)實(shí)數根,口上大零解為全。
小于零將沒(méi)有解,開(kāi)口向下正相反。 用平方差公式因式分解 異號兩個(gè)平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。 用完全平方公式因式分解 兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。 分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。 一平方又一平方,底積2倍在中路。
初中代數的教學(xué)要求①是: 1.使學(xué)生了解有理數、實(shí)數的有關(guān)概念,熟練掌握有理數的運算法則,靈活運用運算律簡(jiǎn) 化運算;會(huì )查平方表、立方表、平方根表、立方根表或用計算器代替算表。
2.使學(xué)生了解有關(guān)代數式、整式、分式和二次根式的概念,掌握它們的性質(zhì)和運算法則, 能夠熟練地進(jìn)行整式、分式和二次根式的運算以及多項式的因式分解。 3.使學(xué)生了解有關(guān)方程、方程組的概念;靈活運用一元一次方程、二元一次方程組和一元 二次方程的解法解方程和方程組,掌握分式方程和簡(jiǎn)單的二元二次方程組的解法,理解一元 二次方程的根的判別式。
能夠分析等量關(guān)系列出方程或方程組解應用題。 使學(xué)生了解一元一次不等式、一元一次不等式組的概念,會(huì )解一元一次不等式和一元一次不 等式組,并把它們的解集在數軸上表示出來(lái)。
4.使學(xué)生理解平面直角坐標系的概念,了解函數的意義,理解正比例函數、反比例函數、一次函數的概念和性質(zhì),理解二次函數的概念,會(huì )根據性質(zhì)畫(huà)出正比例函數、一次函數的圖 象,會(huì )用描點(diǎn)法畫(huà)出反比例函數、二次函數的圖象。 5.使學(xué)生了解統計的思想,掌握一些常用的數據處理方法,能夠用統計的初步知識解決一 些簡(jiǎn)單的實(shí)際問(wèn)題。
6.使學(xué)生掌握消元、降次、配方、換元等常用的數學(xué)方法,解決某些數學(xué)問(wèn)題,理解“特殊 ——一般——特殊”、“未知——已知”、用字母表示數、數形結合和把復雜問(wèn)題轉化成簡(jiǎn)單問(wèn) 題等基本的思想方法。 7.使學(xué)生通過(guò)各種運算和對代數式、方程、不等式的變形以及重要公式的推導,通過(guò)用概 念、法則、性質(zhì)進(jìn)行簡(jiǎn)單的推理,發(fā)展邏輯思維能力。
8.使學(xué)生了解已知與未知、特殊與一般、正與負、等與不等、常量與變量等辯證關(guān)系,以 及反映在函數概念中的運動(dòng)變化觀(guān)點(diǎn)。了解反映在數與式的運算和求方程解的過(guò)程中的矛盾 轉化的觀(guān)點(diǎn)。
同時(shí),利用有關(guān)的代數史料和社會(huì )主義建設成就,對學(xué)生進(jìn)行思想教育。 教學(xué)內容①和具體要求如下。
(一)有理數 l·有理數的概念 有理數。數軸。
相反數。數的絕對值。
有理數大小的比較。 具體要求: (1)了解有理數的意義,會(huì )用正數與負數表示相反意義的量,以及按要求把給出的有理數 歸類(lèi)。
(2)了解數軸、相反數、絕對值等概念和數軸的畫(huà)法,會(huì )用數軸上的點(diǎn)表示整數或分數(以 刻度尺為工具),會(huì )求有理數的相反數與絕對值(絕對值符號內不含字母)。 (3)掌握有理數大小比較的法則,會(huì )用不等號連接兩個(gè)或兩個(gè)以上不同的有理數。
2。有理數的運算 有理數的加法與減法。
代數和。加法運算律。
有理數的乘法與除法。倒數。
乘法運算律。有 理數的乘方。
有理數的混合運算。 科學(xué)記數法。
近似數與有效數字。平方表與立方表。
具體要求: (1)理解有理數的加、減、乘、除、乘方的意義,熟練掌握有理數的運算法則、運算律、運算順序以及有理數的混合運算,靈活運用運算律簡(jiǎn)化運算。 (2)了解倒數概念,會(huì )求有理數的倒數。
(3)掌握大于10的有理數的科學(xué)記數法。 (4)了解近似數與有效數字的概念,會(huì )根據指定的精確度或有效數字的個(gè)數,用四舍五人 法求有理數的近似數;會(huì )查平方表與立方表。
(5)了解有理數的加法與減法、乘法與除法可以相互轉化。 (二)整式的加減 代數式。
代數式的值。整式。
單項式。多項式。
合并同類(lèi)項。 去括號與添括號。
數與整式相乘。整式的加減法。
具體要求: (1)掌握用字母表示有理數,了解用字母表示數是數學(xué)的一大進(jìn)步。 (2)了解代數式、代數式的值的概念,會(huì )列出代數式表示簡(jiǎn)單的數量關(guān)系,會(huì )求代數式的 值。
(3)了解整式、單項式及其系數與次數、多項式次數、項與項數的概念,會(huì )把一個(gè)多項式 接某個(gè)字母降冪排列或升冪排列。 (4)掌握合并同類(lèi)項的方法,去括號、添括號的法則,熟練掌握數與整式相乘的運算以及 整式的加減運算。
(5)通過(guò)用字母表示數、列代數式和求代數式的值、整式的加減,了解抽象概括的思維方 法和特殊與一般的辯證關(guān)系。 (三)一元一次方程 等式。
等式的基本性質(zhì)。方程和方程的解。
解方程。 一元一次方程及其解法。
一元一次方程的應用。 具體要求: (1)了解等式和方程的有關(guān)概念,掌握等式的基本性質(zhì),會(huì )檢驗一個(gè)數是不是某個(gè)一元方 程的解。
(2)了解一元一次方程的概念,靈活運用等式的基本性質(zhì)和移項法則解一元一次方程,會(huì ) 對方程的解進(jìn)行檢驗。 (3)能夠找出簡(jiǎn)單應用題中的未知量和已知量,分析各量之間的關(guān)系,并能夠尋找等量關(guān) 系列出一元一次方程解簡(jiǎn)單的應用題,會(huì )根據應用題的實(shí)際意義,檢查求得的結果是否合理。
(4)通過(guò)解方程的教學(xué),了解“未知”可以轉化為“已知”的思想方法。 (四)二元一次方程組 二元一次方程及其解集。
方程組和它的解。解方程組。
用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。
一次方程組的應用。 具體要求: (1)了解二元一次方程的概念,會(huì )把二元一次方程化為用一個(gè)未知數的代數式表示另一個(gè) 未知數的形式,會(huì )檢查一對數值是不是某個(gè)二元一次方程的一個(gè)解。
(2)了解方程組和它的解、解方程組等概念;會(huì )檢驗一對數值是不是某個(gè)二元一次方程組 的一個(gè)解。 (3)靈活運用代人。
中考總復習通常會(huì )分為三個(gè)階段:全面基礎復習、專(zhuān)題復習和模擬訓練階段。第一階段的目標是夯實(shí)基礎;第二階段側重于重點(diǎn)和難點(diǎn)的復習;第三階段主要是進(jìn)行適應性訓練。 初中數學(xué)總復習是完成初中三年數學(xué)教學(xué)任務(wù)之后的一個(gè)系統、完善、深化所學(xué)內容的關(guān)鍵環(huán)節。重視并認真完成這個(gè)階段的教學(xué)任務(wù),有利于學(xué)生鞏固、消化、歸納數學(xué)基礎知識,提高分析、解決問(wèn)題的能力。 初中數學(xué)內容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書(shū)中,學(xué)我們的生往往學(xué)了新的,忘了舊的。因此,我們依據大綱規定的內容和系統化的知識要點(diǎn),進(jìn)行復習。比如函數、、、、、、這樣有利于我們的學(xué)習,形成對比,加強記憶,
在復習時(shí),根據你們的實(shí)際情況,采用基礎知識習題化的方法,根據平時(shí)教學(xué)中掌握的學(xué)生應用知識的實(shí)際情況,以書(shū)本例題為主,另外編制在平時(shí)教學(xué)中出現的學(xué)生難以理解、遺忘率較高且易混易錯的例題進(jìn)行講解。
如果①, ②兩個(gè)條件分別是: ① 兩組對邊分別平行; ② 有且只有一組對邊平行. 那么請你對標上的其他6個(gè)數字序號寫(xiě)出相對應的條件.
因此抽出一定的時(shí)間對課本前的知識要點(diǎn)進(jìn)行識記,背
②對課本后練習題必須逐題過(guò)關(guān);
聽(tīng)一遍不如看一遍,看一遍不如做一遍,做一遍后還要辯一辯”
對課堂上的要求、、、、、做
對作業(yè)的要求、、、、、獨立完成
對課后作業(yè)要求、、、、獨立完成
對做錯的題目要求、、、、、、懂
③每章后的復習題帶有綜合性,要求多數學(xué)生必須獨立完成,
4.、對于每周一次的模擬卷一定切認真對待,
二.注重數學(xué)思想方法的歸納 數學(xué)思想方法是數學(xué)的精髓,雖然教材中沒(méi)有專(zhuān)門(mén)的章節介紹,但卻滲透在初中三年數學(xué)的全過(guò)程之中,是以數學(xué)知識為載體的更高層次的數學(xué)。近幾年數學(xué)中考試題非常重視對數學(xué)思想方法的考查,包括:數形結合思想、函數與方程思想、轉化思想、類(lèi)比聯(lián)想類(lèi)比歸納的思想、分類(lèi)討論思想、統計思想和換元法、配方法、待定系數法、消元法、降次法、參數法、構造法等。忽視數學(xué)思想方法的復習和整理,這是很多同學(xué)復習中成績(jì)總是上不來(lái)的根本原因之一。在總復習時(shí),對每一種思想方法的實(shí)質(zhì),它所適用的題型,包括解題的步驟都要熟練掌握。 如求方程x2-2=2/x的解的外數
第九章 解直角三角形 ★重點(diǎn)★解直角三角形 ☆ 內容提要☆ 一、三角函數 1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函數值: 0° 30° 45° 60° 90° sinα cosα tgα / ctgα / 3. 互余兩角的三角函數關(guān)系:sin(90°-α)=cosα;… 4. 三角函數值隨角度變化的關(guān)系 5.查三角函數表 二、解直角三角形 1. 定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2. 依據:①邊的關(guān)系: ②角的關(guān)系:A+B=90° ③邊角關(guān)系:三角函數的定義。 注意:盡量避免使用中間數據和除法。
三、對實(shí)際問(wèn)題的處理 1. 俯、仰角: 2.方位角、象限角: 3.坡度: 4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。 四、應用舉例(略) 第十章 圓 ★重點(diǎn)★①圓的重要性質(zhì);②直線(xiàn)與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線(xiàn)段定理。
☆ 內容提要☆ 一、圓的基本性質(zhì) 1.圓的定義(兩種) 2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3.“三點(diǎn)定圓”定理 4.垂徑定理及其推論 5.“等對等”定理及其推論 5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理) ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系) ⑶弦切角定義(弦切角定理) 二、直線(xiàn)和圓的位置關(guān)系 1.三種位置及判定與性質(zhì): 2.切線(xiàn)的性質(zhì)(重點(diǎn)) 3.切線(xiàn)的判定定理(重點(diǎn))。
圓的切線(xiàn)的判定有⑴…⑵… 4.切線(xiàn)長(cháng)定理 三、圓換圓的位置關(guān)系 1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切) 第一章 實(shí)數 ★重點(diǎn)★ 實(shí)數的有關(guān)概念及性質(zhì),實(shí)數的運算 ☆內容提要☆ 一、重要概念 1.數的分類(lèi)及概念 數系表: 說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏) 2)有標準 2.非負數:正實(shí)數與零的統稱(chēng)。(表為:x≥0) 常見(jiàn)的非負數有: 性質(zhì):若干個(gè)非負數的和為0,則每個(gè)非負擔數均為0。
3.倒數: ①定義及表示法 ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時(shí),1/a4.相反數: ①定義及表示法 ②性質(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。 5.數軸:①定義(“三要素”) ②作用:A.直觀(guān)地比較實(shí)數的大小;B.明確體現絕對值意義;C.建立點(diǎn)與實(shí)數的一一對應關(guān)系。
6.奇數、偶數、質(zhì)數、合數(正整數—自然數) 定義及表示: 奇數:2n-1 偶數:2n(n為自然數) 7.絕對值:①定義(兩種): 代數定義: 幾何定義:數a的絕對值頂的幾何意義是實(shí)數a在數軸上所對應的點(diǎn)到原點(diǎn)的距離。 ②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現,其關(guān)鍵一步是去掉“││”符號。
二、實(shí)數的運算 1. 運算法則(加、減、乘、除、乘方、開(kāi)方) 2. 運算定律(五個(gè)—加法[乘法]交換律、結合律;[乘法對加法的] 分配律) 3. 運算順序:A.高級運算到低級運算;B.(同級運算)從“左” 到“右”(如5÷ *5);C.(有括號時(shí))由“小”到“中”到“大”。 三、應用舉例(略) 附:典型例題 1. 已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。
第二章 代數式 ★重點(diǎn)★代數式的有關(guān)概念及性質(zhì),代數式的運算 ☆內容提要☆ 一、重要概念 分類(lèi): 1.代數式與有理式 用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨 的一個(gè)數或字母也是代數式。
整式和分式統稱(chēng)為有理式。 2.整式和分式 含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒(méi)有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。 有除法運算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式 沒(méi)有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個(gè)數或字母) 幾個(gè)單項式的和,叫做多項式。
說(shuō)明:①根據除式中有否字母,將整式和分式區別開(kāi);根據整式中有否加減運算,把單項式、多項式區分開(kāi)。②進(jìn)行代數式分類(lèi)時(shí),是以所給的代數式為對象,而非以變形后的代數式為對象。
劃分代數式類(lèi)別時(shí),是從外形來(lái)看。如, =x, =│x│等。
4.系數與指數 區別與聯(lián)系:①從位置上看;②從表示的意義上看 5.同類(lèi)項及其合并 條件:①字母相同;②相同字母的指數相同 合并依據:乘法分配律 6.根式 表示方根的代數式叫做根式。 含有關(guān)于字母開(kāi)方運算的代數式叫做無(wú)理式。
注意:①從外形上判斷;②區別: 、是根式,但不是無(wú)理式(是無(wú)理數)。 7.算術(shù)平方根 ⑴正數a的正的平方根( [a≥0—與“平方根”的區別]); ⑵算術(shù)平方根與絕對值 ① 聯(lián)系:都是非負數, =│a│ ②區別:│a│中,a為一切實(shí)數; 中,a為非負數。
8.同類(lèi)二次根式、最簡(jiǎn)二次根式、分母有理化 化為最簡(jiǎn)二次根式以后,被開(kāi)方數相同的二次根式叫做同類(lèi)二次根式。 滿(mǎn)足條件:①被開(kāi)方數的因數是整數,因式是整式;②被開(kāi)方數中不含有開(kāi)得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。 9.指數 ⑴ ( —冪,乘方運算) ① a>0時(shí), >0;②a0(n是偶數), ⑵零指數: =1(a≠0) 負整指數: =1/ (a≠0,p是正整數) 二、運算定律、性質(zhì)、法則 1.分式的加、減、乘、除、乘方、開(kāi)方法則 2.分式的性質(zhì) ⑴基。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:2.656秒