中考總復習通常會分為三個階段:全面基礎復習、專題復習和模擬訓練階段。第一階段的目標是夯實基礎;第二階段側(cè)重于重點和難點的復習;第三階段主要是進行適應性訓練。 初中數(shù)學總復習是完成初中三年數(shù)學教學任務之后的一個系統(tǒng)、完善、深化所學內(nèi)容的關鍵環(huán)節(jié)。重視并認真完成這個階段的教學任務,有利于學生鞏固、消化、歸納數(shù)學基礎知識,提高分析、解決問題的能力。 初中數(shù)學內(nèi)容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書中,學我們的生往往學了新的,忘了舊的。因此,我們依據(jù)大綱規(guī)定的內(nèi)容和系統(tǒng)化的知識要點,進行復習。比如函數(shù)、、、、、、這樣有利于我們的學習,形成對比,加強記憶,
在復習時,根據(jù)你們的實際情況,采用基礎知識習題化的方法,根據(jù)平時教學中掌握的學生應用知識的實際情況,以書本例題為主,另外編制在平時教學中出現(xiàn)的學生難以理解、遺忘率較高且易混易錯的例題進行講解。
如果①, ②兩個條件分別是: ① 兩組對邊分別平行; ② 有且只有一組對邊平行. 那么請你對標上的其他6個數(shù)字序號寫出相對應的條件.
因此抽出一定的時間對課本前的知識要點進行識記,背
②對課本后練習題必須逐題過關;
聽一遍不如看一遍,看一遍不如做一遍,做一遍后還要辯一辯”
對課堂上的要求、、、、、做
對作業(yè)的要求、、、、、獨立完成
對課后作業(yè)要求、、、、獨立完成
對做錯的題目要求、、、、、、懂
③每章后的復習題帶有綜合性,要求多數(shù)學生必須獨立完成,
4.、對于每周一次的模擬卷一定切認真對待,
二.注重數(shù)學思想方法的歸納 數(shù)學思想方法是數(shù)學的精髓,雖然教材中沒有專門的章節(jié)介紹,但卻滲透在初中三年數(shù)學的全過程之中,是以數(shù)學知識為載體的更高層次的數(shù)學。近幾年數(shù)學中考試題非常重視對數(shù)學思想方法的考查,包括:數(shù)形結(jié)合思想、函數(shù)與方程思想、轉(zhuǎn)化思想、類比聯(lián)想類比歸納的思想、分類討論思想、統(tǒng)計思想和換元法、配方法、待定系數(shù)法、消元法、降次法、參數(shù)法、構(gòu)造法等。忽視數(shù)學思想方法的復習和整理,這是很多同學復習中成績總是上不來的根本原因之一。在總復習時,對每一種思想方法的實質(zhì),它所適用的題型,包括解題的步驟都要熟練掌握。 如求方程x2-2=2/x的解的外數(shù)
初中代數(shù)的教學要求①是: 1.使學生了解有理數(shù)、實數(shù)的有關概念,熟練掌握有理數(shù)的運算法則,靈活運用運算律簡 化運算;會查平方表、立方表、平方根表、立方根表或用計算器代替算表。
2.使學生了解有關代數(shù)式、整式、分式和二次根式的概念,掌握它們的性質(zhì)和運算法則, 能夠熟練地進行整式、分式和二次根式的運算以及多項式的因式分解。 3.使學生了解有關方程、方程組的概念;靈活運用一元一次方程、二元一次方程組和一元 二次方程的解法解方程和方程組,掌握分式方程和簡單的二元二次方程組的解法,理解一元 二次方程的根的判別式。
能夠分析等量關系列出方程或方程組解應用題。 使學生了解一元一次不等式、一元一次不等式組的概念,會解一元一次不等式和一元一次不 等式組,并把它們的解集在數(shù)軸上表示出來。
4.使學生理解平面直角坐標系的概念,了解函數(shù)的意義,理解正比例函數(shù)、反比例函數(shù)、一次函數(shù)的概念和性質(zhì),理解二次函數(shù)的概念,會根據(jù)性質(zhì)畫出正比例函數(shù)、一次函數(shù)的圖 象,會用描點法畫出反比例函數(shù)、二次函數(shù)的圖象。 5.使學生了解統(tǒng)計的思想,掌握一些常用的數(shù)據(jù)處理方法,能夠用統(tǒng)計的初步知識解決一 些簡單的實際問題。
6.使學生掌握消元、降次、配方、換元等常用的數(shù)學方法,解決某些數(shù)學問題,理解“特殊 ——一般——特殊”、“未知——已知”、用字母表示數(shù)、數(shù)形結(jié)合和把復雜問題轉(zhuǎn)化成簡單問 題等基本的思想方法。 7.使學生通過各種運算和對代數(shù)式、方程、不等式的變形以及重要公式的推導,通過用概 念、法則、性質(zhì)進行簡單的推理,發(fā)展邏輯思維能力。
8.使學生了解已知與未知、特殊與一般、正與負、等與不等、常量與變量等辯證關系,以 及反映在函數(shù)概念中的運動變化觀點。了解反映在數(shù)與式的運算和求方程解的過程中的矛盾 轉(zhuǎn)化的觀點。
同時,利用有關的代數(shù)史料和社會主義建設成就,對學生進行思想教育。 教學內(nèi)容①和具體要求如下。
(一)有理數(shù) l·有理數(shù)的概念 有理數(shù)。數(shù)軸。
相反數(shù)。數(shù)的絕對值。
有理數(shù)大小的比較。 具體要求: (1)了解有理數(shù)的意義,會用正數(shù)與負數(shù)表示相反意義的量,以及按要求把給出的有理數(shù) 歸類。
(2)了解數(shù)軸、相反數(shù)、絕對值等概念和數(shù)軸的畫法,會用數(shù)軸上的點表示整數(shù)或分數(shù)(以 刻度尺為工具),會求有理數(shù)的相反數(shù)與絕對值(絕對值符號內(nèi)不含字母)。 (3)掌握有理數(shù)大小比較的法則,會用不等號連接兩個或兩個以上不同的有理數(shù)。
2。有理數(shù)的運算 有理數(shù)的加法與減法。
代數(shù)和。加法運算律。
有理數(shù)的乘法與除法。倒數(shù)。
乘法運算律。有 理數(shù)的乘方。
有理數(shù)的混合運算。 科學記數(shù)法。
近似數(shù)與有效數(shù)字。平方表與立方表。
具體要求: (1)理解有理數(shù)的加、減、乘、除、乘方的意義,熟練掌握有理數(shù)的運算法則、運算律、運算順序以及有理數(shù)的混合運算,靈活運用運算律簡化運算。 (2)了解倒數(shù)概念,會求有理數(shù)的倒數(shù)。
(3)掌握大于10的有理數(shù)的科學記數(shù)法。 (4)了解近似數(shù)與有效數(shù)字的概念,會根據(jù)指定的精確度或有效數(shù)字的個數(shù),用四舍五人 法求有理數(shù)的近似數(shù);會查平方表與立方表。
(5)了解有理數(shù)的加法與減法、乘法與除法可以相互轉(zhuǎn)化。 (二)整式的加減 代數(shù)式。
代數(shù)式的值。整式。
單項式。多項式。
合并同類項。 去括號與添括號。
數(shù)與整式相乘。整式的加減法。
具體要求: (1)掌握用字母表示有理數(shù),了解用字母表示數(shù)是數(shù)學的一大進步。 (2)了解代數(shù)式、代數(shù)式的值的概念,會列出代數(shù)式表示簡單的數(shù)量關系,會求代數(shù)式的 值。
(3)了解整式、單項式及其系數(shù)與次數(shù)、多項式次數(shù)、項與項數(shù)的概念,會把一個多項式 接某個字母降冪排列或升冪排列。 (4)掌握合并同類項的方法,去括號、添括號的法則,熟練掌握數(shù)與整式相乘的運算以及 整式的加減運算。
(5)通過用字母表示數(shù)、列代數(shù)式和求代數(shù)式的值、整式的加減,了解抽象概括的思維方 法和特殊與一般的辯證關系。 (三)一元一次方程 等式。
等式的基本性質(zhì)。方程和方程的解。
解方程。 一元一次方程及其解法。
一元一次方程的應用。 具體要求: (1)了解等式和方程的有關概念,掌握等式的基本性質(zhì),會檢驗一個數(shù)是不是某個一元方 程的解。
(2)了解一元一次方程的概念,靈活運用等式的基本性質(zhì)和移項法則解一元一次方程,會 對方程的解進行檢驗。 (3)能夠找出簡單應用題中的未知量和已知量,分析各量之間的關系,并能夠?qū)ふ业攘筷P 系列出一元一次方程解簡單的應用題,會根據(jù)應用題的實際意義,檢查求得的結(jié)果是否合理。
(4)通過解方程的教學,了解“未知”可以轉(zhuǎn)化為“已知”的思想方法。 (四)二元一次方程組 二元一次方程及其解集。
方程組和它的解。解方程組。
用代人(消元)法、加減(消元)法解二元一次方程組。三元一次方程組及其解法舉例。
一次方程組的應用。 具體要求: (1)了解二元一次方程的概念,會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個 未知數(shù)的形式,會檢查一對數(shù)值是不是某個二元一次方程的一個解。
(2)了解方程組和它的解、解方程組等概念;會檢驗一對數(shù)值是不是某個二元一次方程組 的一個解。 (3)靈活運用代人。
暈,打了我10來個小時·~·#~!·謝謝大家給面子看啊~ |原創(chuàng)|復習 一、數(shù)與代數(shù) A:數(shù)與式:1:有理數(shù) 有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù) ②分數(shù)→正分數(shù)/負分數(shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。 ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。 ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他本身/負數(shù)的絕對值是他的相反數(shù)/0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法: 減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2:實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)/0的立方根是0/負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3:代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4:整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM。
AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。
A0=1,A-P=1/AP 整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式 方法:提公因式法/運用公式法/分組分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B:方程與不等式 1:方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,。
初中數(shù)學總復習提綱 第一章 實數(shù) ★重點★ 實數(shù)的有關概念及性質(zhì),實數(shù)的運算 ☆內(nèi)容提要☆ 一、重要概念 1.數(shù)的分類及概念 數(shù)系表: 說明:“分類”的原則:1)相稱(不重、不漏) 2)有標準 2.非負數(shù):正實數(shù)與零的統(tǒng)稱。
(表為:x≥0) 常見的非負數(shù)有: 性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。 3.倒數(shù): ①定義及表示法 ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a4.相反數(shù): ①定義及表示法 ②性質(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”) ②作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關系。 6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù)) 定義及表示: 奇數(shù):2n-1 偶數(shù):2n(n為自然數(shù)) 7.絕對值:①定義(兩種): 代數(shù)定義: 幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關鍵一步是去掉“││”符號。 二、實數(shù)的運算 1. 運算法則(加、減、乘、除、乘方、開方) 2. 運算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的] 分配律) 3. 運算順序:A.高級運算到低級運算;B.(同級運算)從“左” 到“右”(如5÷ *5);C.(有括號時)由“小”到“中”到“大”。
三、應用舉例(略) 附:典型例題 1. 已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a. 2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。 第二章 代數(shù)式 ★重點★代數(shù)式的有關概念及性質(zhì),代數(shù)式的運算 ☆內(nèi)容提要☆ 一、重要概念 分類: 1.代數(shù)式與有理式 用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。
單獨 的一個數(shù)或字母也是代數(shù)式。 整式和分式統(tǒng)稱為有理式。
2.整式和分式 含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。 沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。 3.單項式與多項式 沒有加減運算的整式叫做單項式。
(數(shù)字與字母的積—包括單獨的一個數(shù)或字母) 幾個單項式的和,叫做多項式。 說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。
②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。
如, =x, =│x│等。 4.系數(shù)與指數(shù) 區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看 5.同類項及其合并 條件:①字母相同;②相同字母的指數(shù)相同 合并依據(jù):乘法分配律 6.根式 表示方根的代數(shù)式叫做根式。
含有關于字母開方運算的代數(shù)式叫做無理式。 注意:①從外形上判斷;②區(qū)別: 、是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根 ⑴正數(shù)a的正的平方根( [a≥0—與“平方根”的區(qū)別]); ⑵算術(shù)平方根與絕對值 ① 聯(lián)系:都是非負數(shù), =│a│ ②區(qū)別:│a│中,a為一切實數(shù); 中,a為非負數(shù)。 8.同類二次根式、最簡二次根式、分母有理化 化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。 把分母中的根號劃去叫做分母有理化。
9.指數(shù) ⑴ ( —冪,乘方運算) ① a>0時, >0;②a0(n是偶數(shù)), ⑵零指數(shù): =1(a≠0) 負整指數(shù): =1/ (a≠0,p是正整數(shù)) 二、運算定律、性質(zhì)、法則 1.分式的加、減、乘、除、乘方、開方法則 2.分式的性質(zhì) ⑴基本性質(zhì): = (m≠0) ⑵符號法則: ⑶繁分式:①定義;②化簡方法(兩種) 3.整式運算法則(去括號、添括號法則) 4.冪的運算性質(zhì):① · = ;② ÷ = ;③ = ;④ = ;⑤ 技巧: 5.乘法法則:⑴單*單;⑵單*多;⑶多*多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b) = 7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。 9.算術(shù)根的性質(zhì): = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用) 10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. . 11.科學記數(shù)法: (1≤a三、應用舉例(略) 四、數(shù)式綜合運算(略) 第三章 統(tǒng)計初步 ★重點★ ☆ 內(nèi)容提要☆ 一、重要概念 1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。 3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。 5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù)) 二、計算方法 1.樣本平均數(shù):⑴ ;⑵若 , ,…, ,則 (a—常數(shù), , ,…, 接近較整的常數(shù)a);⑶加權(quán)平均數(shù): ;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。
2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、、…、的平均數(shù)的較“整”的常數(shù));若 、、…、較“小”較。
第一章 數(shù)與式
1 正數(shù)與負數(shù)
2 有理數(shù)和數(shù)軸
3 相反數(shù)與絕對值
4 a+b=+-(|a|+|b|)
5 a+b=b+a,(a+b)+c=a+(b+c)
6 a-b=a+(-b)
7 ab=+-|a|·|b|,a·0=0,ab=ba,(ab)c=a(bc),(a+b)c=ac+bc
8 a*b=a*1/b(b=0)
9 a·a……a=an(n為正整數(shù))
10 a*10n
11 單項式:axmyn
12 多項式:A+B+C
13 合并同類項:axn+-bxn=(a+-b)xn
14 am·an=am+n(m,n都是正整數(shù))
15 (am)n=amn(m,n都是正整數(shù))
16 (a·b)n=anbn(n為正整數(shù))
17 單項式乘法則
18 單項式與多項式相乘法則
19 多項式相乘法則
20 (a+b)(a-b)=a2-b2
21 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2
22 am/an=am-n(a=0,m,n都是正整數(shù),且M>n)
23 單項式除以單項式法則
24 多項式除以單項式的法則
25 ma+mb+mc=m(a+b+c)
……
第二章 方程和不等式
第三章 函數(shù)及其圖象
第四章 三角形
第五章 四邊形
第六章 圓形
第七章 統(tǒng)計與概率初步
1,英語和數(shù)學,提前準備預習。
2,可以買:北京教育出版社《基礎知識手冊》等基礎性強的教輔,只用一套。不必買一大堆,只求精簡實用。
3,可以提前上網(wǎng)看些歷年中考考試卷和中考考試說明大綱。提前進入應試狀態(tài)。做到心中有底。
三從一大——一切從難,一切從嚴,一切從實戰(zhàn)出發(fā),大運動量訓練。
4,語文和英語的語法,要掌握。主謂賓定狀補,不定式,從句,直接引語和間接引語等語法主干要深入骨髓。固定詞組和常用短語一定要記住,生詞可以每天不定時反復記憶。
5,數(shù)學的公式中,除公理之外的定理,推論一定要自己推理出來。課后習題要快速正確完成。要做到知其然和知其所以然。
6,中考的題目源于教材,難于教材,百分七十以上是基礎題和中等題,教材是重中之重。
7,中學英語和數(shù)學是大多數(shù)實用性強難度大專業(yè)的重要基礎課,對以后選擇專業(yè)至關重要。是起到戰(zhàn)略核心作用的學科。
記住一句:萬變不如其宗,先整理好考試大綱,制定可行的目標,用田忌賽馬的方法對付考試,先吃肉再啃骨頭。平時可以多看一下巨鹿之戰(zhàn)或薩爾滸之戰(zhàn),憑他幾路來,我只一路去。這樣才可將注意力集中。
心靜不下來,一種方法:參考一下西楚霸王項羽,破釜沉舟,九戰(zhàn)九捷。俘殺四十萬秦軍。
武圣義絕關羽,溫酒斬華雄,斬顏良,誅文丑。過五關斬六將。把考試當成一場戰(zhàn)爭來對待。
用氣勢帶替心浮氣燥。
一、分式 1、同底數(shù)冪相除,底數(shù)不變,指數(shù)相減。
am an=am-n(a 0) 2、兩個單項式相除,只要將系數(shù)及同底數(shù)冪分別相除。 3、形如 (A、B是整式,且B中含有字母,B 0)的式子叫做分式。
=0(A=0,B 0)。 4、分式的分子和分母都乘以(或除以)同一個不等于零的整式,分式的值不變。
約分后,分子與分母不再有公因式的分式稱為最簡分式。分式運算的結(jié)果一定要是最簡。
5、最簡公分母是各分母所有因式的最高次冪的積。 6、在將分式方程變形為整式方程時,方程兩邊同乘以一個含未知數(shù)的整式,并約去分母,有時可能產(chǎn)生不適合原方程的解(或根),這種根稱為增根。
因此,在解分式方程時必須進行檢驗。 7、任何不等于零的數(shù)的零次冪都等于1。
a0=1(a 0) 8、任何不等于零的數(shù)的-n(n為正整數(shù))次冪,等于這個數(shù)的n次冪的倒數(shù)。a-n=( )n= (a 9、用科學記數(shù)法表示一些絕對值較小的數(shù),即將它們表示成a 的形式,其中n是正整數(shù),1≤ 二、一元二次方程 1、只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫做一元二次方程。
一般形式:ax2+bx+c=0(a、b、c是已知數(shù),a 其中a、b、c分別叫做二次項系數(shù)、一次項系數(shù)和常數(shù)項。 2、一元二次方程的解法:(1)直接開平方法(2)因式分解法(十字相乘法)(3)公式法x= (b2-4ac (4)配方法(重點見P32) 3、一元二次方程根的判別式( 2-4ac)當a 時(1) >0時方程有兩個不相等的實數(shù)根;(2) =0時方程有兩不相等的實數(shù)根;(3) 4、一元二次方程根與系數(shù)關系(韋達定理):ax2+bx+c=0(a、b、c是已知數(shù),a 當 ≥0時,設方程兩根為x1,x2則x1+x2=- ,x1 x2= 如 = =…… 5、以x1,x2為根的一元二次方程為: 三、二次函數(shù) 2、拋物線 的對稱軸是 軸,頂點是原點,當 時,開口向上,當 時,開口向下。
四、圖形的全等 1、能夠完全重合的兩個圖形就是全等圖形。互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、全等圖形的對應邊相等,對應角相等。 3、全等三角形的識別(1)如果兩個三角形的三條邊分別對應相等,那么這兩個三角形全等。
簡記(邊邊邊或SSS)(2) 如果兩個三角形有兩邊及其夾角分別對應相等,那么這個三角形全等。簡記為(邊角邊SAS) (3)如果兩個三角形的兩個角及其夾邊分別對應相等,那么這兩個三角形全等,簡記為(角邊角ASA) (4)如果兩個三角形的斜邊及一條直角邊分別對應相等,那么這兩個直角三角形全等。
簡記為(HL) 4、能判斷正確或是錯誤的句子叫做命題,命題常寫成“如果……那么……”的形式,用“如果”開始的部分是題設,用“那么”開始的部分是結(jié)論。能判斷其它命題真假的原始依據(jù),這樣的真命題叫做公理。
有些命題可以從公理或其它真命題出發(fā),用邏輯推理的方法判斷它們是正確的,并且可以進一步作為判斷其它命題真假的依據(jù),這樣的真命題叫做定理。根據(jù)題設,定義以及公理、定理等,經(jīng)過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明。
五、圓 1、圓的有關概念:(1)、確定一個圓的要素是圓心和半徑。(2)連結(jié)圓上任意兩點的線段叫做弦。
經(jīng)過圓心的弦叫做直徑。圓上任意兩點間的部分叫做圓弧,簡稱弧。
小于半圓周的圓弧叫做劣弧。大于半圓周的圓弧叫做優(yōu)弧。
在同圓或等圓中,能夠互相重合的弧叫做等弧。頂點在圓上,并且兩邊和圓相交的角叫圓周角。
經(jīng)過三角形三個頂點可以畫一個圓,并且只能畫一個,經(jīng)過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內(nèi)接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等于斜邊的一半。與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓外切三角形,三角形的內(nèi)心就是三角形三條內(nèi)角平分線的交點。
直角三角形內(nèi)切圓半徑 滿足: 。 2、圓的有關性質(zhì)(1)定理在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對的其余各組量都分別相等。(2)垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推論1(ⅰ)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。(ⅱ)弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
(ⅲ)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。推論2圓的兩條平行弦所夾的弧相等。
(3)圓周角定理:一條弧所對的圓周角等于該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。
推論2半圓或直徑所對的圓周角都相等,都等于90 。90 的圓周角所對的弦是圓的直徑。
推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。(4)切線的判定與性質(zhì):判定定理:經(jīng)過半徑的外端且垂直與這條半徑的直線是圓的切線。
性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑;經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點;。
初三數(shù)學知識點第一章 二次根式 1 二次根式:形如 ( )的式子為二次根式; 性質(zhì): ( )是一個非負數(shù); ; 。
2 二次根式的乘除: ; 。 3 二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4 海倫-秦九韶公式: ,S是三角形的面積,p為 。第二章 一元二次方程1 一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2 一元二次方程的解法 配方法:將方程的一邊配成完全平方式,然后兩邊開方; 公式法: 因式分解法:左邊是兩個因式的乘積,右邊為零。3 一元二次方程在實際問題中的應用4 韋達定理:設 是方程 的兩個根,那么有第三章 旋轉(zhuǎn) 1 圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換 性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等; 對應點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角 旋轉(zhuǎn)前后的圖形全等。
2 中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱; 中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形; 3 關于原點對稱的點的坐標 第四章 圓 1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直于弦的直徑 圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸; 垂直于弦的直徑平分弦,并且平方弦所對的兩條弧; 平分弦的直徑垂直弦,并且平分弦所對的兩條弧。 3 弧、弦、圓心角 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半; 半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。 5 點和圓的位置關系 點在圓外 功氦哆教馨寄鵝犀琺簍 點在圓上 d=r 點在圓內(nèi) d<r 定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。 6直線和圓的位置關系 相交 dr 切線的性質(zhì)定理:圓的切線垂直于過切點的半徑; 切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線; 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。 7 圓和圓的位置關系 外離 d>R+r 外切 d=R+r 相交 R-r<d<R+r 內(nèi)切 d=R-r 內(nèi)含 d<R-r 8 正多邊形和圓 正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 扇形面積: 10 圓錐的側(cè)面積和全面積 側(cè)面積: 全面積11 (附加)相交弦定理、切割線定理第五章 概率初步 1 概率意義:在大量重復試驗中,事件A發(fā)生的頻率 穩(wěn)定在某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2 用列舉法求概率 一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)= 3 用頻率去估計概率下冊第六章 二次函數(shù) 1 二次函數(shù) = a>0,開口向上;a<0,開口向下; 對稱軸: ; 頂點坐標: ; 圖像的平移可以參照頂點的平移。2 用函數(shù)觀點看一元二次方程3 二次函數(shù)與實際問題第七章 相似1 圖形的相似 相似多邊形的對應邊的比值相等,對應角相等; 兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似; 相似比:相似多邊形對應邊的比值。
2 相似三角形判定:平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似; 如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似; 如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似; 如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。3 相似三角形的周長和面積相似三角形(多邊形)的周長的比等于相似比;相似三角形(多邊形)的面積的比等于相似比的平方。
4 位似位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。第八章 銳角三角函數(shù)1 銳角三角函數(shù):正弦、余弦、正切;2 解直角三角形第九章 投影和視圖 1 投影:平行投影、中心投影、正投影2 三視圖:俯視圖、主視圖、左視圖。
3 三視圖的畫法。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:2.829秒