所謂方法,是指人們?yōu)榱诉_到某種目的而采取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過(guò)長(cháng)期的實(shí)踐,發(fā)現了許多運用數學(xué)思想的手段、門(mén)路或程序.同一手段、門(mén)路或程序被重復運用了多次,并且都達到了預期的目的,就成為數學(xué)方法.數學(xué)方法是以數學(xué)為工具進(jìn)行科學(xué)研究的方法,即用數學(xué)語(yǔ)言表達事物的狀態(tài)、關(guān)系和過(guò)程,經(jīng)過(guò)推導、運算與分析,以形成解釋、判斷和預言的方法. 數學(xué)方法具有以下三個(gè)基本特征:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴密性及結論的確定性;三是應用的普遍性和可操作性. 數學(xué)方法在科學(xué)技術(shù)研究中具有舉足輕重的地位和作用:一是提供簡(jiǎn)潔精確的形式化語(yǔ)言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具.現代科學(xué)技術(shù)特別是電子計算機的發(fā)展,與數學(xué)方法的地位和作用的強化正好是相輔相成. 在中學(xué)數學(xué)中經(jīng)常用到的基本數學(xué)方法,大致可以分為以下三類(lèi): (1)邏輯學(xué)中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類(lèi)討論)等.這些方法既要遵從邏輯學(xué)中的基本規律和法則,又因為運用于數學(xué)之中而具有數學(xué)的特色. (2)數學(xué)中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱(chēng)坐標法,在代數中常稱(chēng)圖象法,在我們今后要學(xué)習的解析幾何中常稱(chēng)坐標法)、比較法(數學(xué)中主要是指比較大小,這與邏輯學(xué)中的多方位比較不同)、放縮法,以及將來(lái)要學(xué)習的向量法、數學(xué)歸納法(這與邏輯學(xué)中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛. (3)數學(xué)中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱(chēng)之為中間變量法)、拆項補項法(含有添加輔助元素實(shí)現化歸的數學(xué)思想)、因式分解諸方法,以及平行移動(dòng)法、翻折法等.這些方法在解決某些數學(xué)問(wèn)題時(shí)也起著(zhù)重要作用,我們不可等閑視之.。
數學(xué)解題思想方法有哪些
一.數學(xué)思想方法總論
高中數學(xué)一線(xiàn)牽,代數幾何兩珠連;
三個(gè)基本記心間,四種能力非等閑.
常規五法天天練,策略六項時(shí)時(shí)變,
精研數學(xué)七思想,誘思導學(xué)樂(lè )無(wú)邊.
一 線(xiàn):函數一條主線(xiàn)(貫穿教材始終)
二 珠:代數、幾何珠聯(lián)璧合(注重知識交匯)
三 基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運算(準確)、邏輯推理(嚴謹)、
空間想象(豐富)、分解問(wèn)題(靈活)
五 法:換元法、配方法、待定系數法、分析法、歸納法.
六策略:以簡(jiǎn)馭繁,正難則反,以退為進(jìn),化異為同,移花接木,以靜思動(dòng).
七思想:函數方程最重要,分類(lèi)整合常用到,
數形結合千般好,化歸轉化離不了;
有限自將無(wú)限描,或然終被必然表,
特殊一般多辨證,知識交匯步步高.
二.數學(xué)知識方法分論:
集合與邏輯
集合邏輯互表里,子交并補歸全集.
對錯難知開(kāi)語(yǔ)句,是非分明即命題;
縱橫交錯原否逆,充分必要四關(guān)系.
真非假時(shí)假非真,或真且假運算奇.
函數與數列
數列函數子母胎,等差等比自成排.
數列求和幾多法?通項遞推思路開(kāi);
變量分離無(wú)好壞,函數復合有內外.
同增異減定單調,區間挖隱最值來(lái).
三角函數
三角定義比值生,弧度互化實(shí)數融;
同角三類(lèi)善誘導,和差倍半巧變通.
解前若能三平衡,解后便有一脈承;
角值計算大化小,弦切相逢異化同.
方程與不等式
函數方程不等根,常使參數范圍生;
一正二定三相等,均值定理最值成.
參數不定比大小,兩式不同三法證;
等與不等無(wú)絕對,變量分離方有恒.
解析幾何
聯(lián)立方程解交點(diǎn),設而不求巧判別;
韋達定理表弦長(cháng),斜率轉化過(guò)中點(diǎn).
選參建模求軌跡,曲線(xiàn)對稱(chēng)找距離;
動(dòng)點(diǎn)相關(guān)歸定義,動(dòng)中求靜助解析.
立體幾何
多點(diǎn)共線(xiàn)兩面交,多線(xiàn)共面一法巧;
空間三垂優(yōu)弦大,球面兩點(diǎn)劣弧小.
線(xiàn)線(xiàn)關(guān)系線(xiàn)面找,面面成角線(xiàn)線(xiàn)表;
等積轉化連射影,能割善補架通橋.
排列與組合
分步則乘分類(lèi)加,欲鄰需捆欲隔插;
有序則排無(wú)序組,正難則反排除它.
元素重復連乘法,特元特位你先拿;
平均分組階乘除,多元少位我當家.
二項式定理
二項乘方知多少,萬(wàn)里源頭通項找;
展開(kāi)三定項指系,組合系數楊輝角.
整除證明底變妙,二項求和特值巧;
兩端對稱(chēng)誰(shuí)最大?主峰一覽眾山小.
概率與統計
概率統計同根生,隨機發(fā)生等可能;
互斥事件一枝秀,相互獨立同時(shí)爭.
樣本總體抽樣審,獨立重復二項分;
隨機變量分布列,期望方差論偽真.
數學(xué)常用的數學(xué)思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類(lèi)思想,類(lèi)比思想,函數的思想,方程的思想,無(wú)逼近思想等等。
1.用字母表示數的思想:這是基本的數學(xué)思想之一 .在代數第一冊第二章“代數初步知識”中,主要體現了這種思想。
2.數形結合:是數學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數學(xué)問(wèn)題的有效思想。“數缺形時(shí)少直觀(guān),形無(wú)數時(shí)難入微”是我國著(zhù)名數學(xué)家華羅庚教授的名言,是對數形結合的作用進(jìn)行了高度的概括。
3.轉化思想:在整個(gè)初中數學(xué)中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個(gè)未知(待解決)的問(wèn)題化為已解決的或易于解決的問(wèn)題來(lái)解決,如化繁為簡(jiǎn)、化難為易,化未知為已知,化高次為低次等,它是解決問(wèn)題的一種最基本的思想,它是數學(xué)基本思想方法之一。
4.分類(lèi)思想:有理數的分類(lèi)、整式的分類(lèi)、實(shí)數的分類(lèi)、角的分類(lèi),三角形的分類(lèi)、四邊形的分類(lèi)、點(diǎn)與圓的位置關(guān)系、直線(xiàn)與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過(guò)分類(lèi)討論的。
5.類(lèi)比:類(lèi)比推理在人們認識和改造客觀(guān)世界的活動(dòng)中具有重要意義.它能觸類(lèi)旁通,啟發(fā)思考,不僅是解決日常生活中大量問(wèn)題的基礎,而且是進(jìn)行科學(xué)研究和發(fā)明創(chuàng )造的有力工具.
6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動(dòng)、變化和發(fā)展的過(guò)程中,這就要求我們教學(xué)中重視函數的思想方法的教學(xué)。
7.方程:是初中代數的主要內容.初中階段主要學(xué)習了幾類(lèi)方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關(guān)系,通過(guò)設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,
擴展資料:
函數思想,是指用函數的概念和性質(zhì)去分析問(wèn)題、轉化問(wèn)題和解決問(wèn)題。方程思想,是從問(wèn)題的數量關(guān)系入手,運用數學(xué)語(yǔ)言將問(wèn)題中的條件轉化為數學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過(guò)解方程(組)或不等式(組)來(lái)使問(wèn)題獲解。
從問(wèn)題的整體性質(zhì)出發(fā),突出對問(wèn)題的整體結構的分析和改造,發(fā)現問(wèn)題的整體結構特征,善于用“集成”的眼光,把某些式子或圖形看成一個(gè)整體,把握它們之間的關(guān)聯(lián),進(jìn)行有目的的、有意識的整體處理。整體思想方法在代數式的化簡(jiǎn)與求值、解方程(組)、幾何解證等方面都有廣泛的應用。
參考資料:百度百科-數學(xué)思想
1 函數思想
把某一數學(xué)問(wèn)題用函數表示出來(lái),并且利用函數探究這個(gè)問(wèn)題的一般規律。
2 數形結合思想
把代數和幾何相結合,例如對幾何問(wèn)題用代數方法解答,對代數問(wèn)題用幾何方法解答。
3 整體思想
整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學(xué)問(wèn)題中的具體運用。
4 轉化思想
在于將未知的,陌生的,復雜的問(wèn)題通過(guò)演繹歸納轉化為已知的,熟悉的,簡(jiǎn)單的問(wèn)題。
5 類(lèi)比思想
把兩個(gè)(或兩類(lèi))不同的數學(xué)對象進(jìn)行比較,如果發(fā)現它們在某些方面有相同或類(lèi)似之處,那么推斷它們在其他方面也可能有相同或類(lèi)似之處。
擴展資料:
函數思想,是指用函數的概念和性質(zhì)去分析問(wèn)題、轉化問(wèn)題和解決問(wèn)題。方程思想,是從問(wèn)題的數量關(guān)系入手,運用數學(xué)語(yǔ)言將問(wèn)題中的條件轉化為數學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過(guò)解方程(組)或不等式(組)來(lái)使問(wèn)題獲解。有時(shí),還實(shí)現函數與方程的互相轉化、接軌,達到解決問(wèn)題的目的。
笛卡爾的方程思想是:實(shí)際問(wèn)題→數學(xué)問(wèn)題→代數問(wèn)題→方程問(wèn)題。宇宙世界,充斥著(zhù)等式和不等式。我們知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值問(wèn)題是通過(guò)解方程來(lái)實(shí)現的……等等;不等式問(wèn)題也與方程是近親,密切相關(guān)。列方程、解方程和研究方程的特性,都是應用方程思想時(shí)需要重點(diǎn)考慮的。
函數描述了自然界中數量之間的關(guān)系,函數思想通過(guò)提出問(wèn)題的數學(xué)特征,建立函數關(guān)系型的數學(xué)模型,從而進(jìn)行研究。
它體現了“聯(lián)系和變化”的辯證唯物主義觀(guān)點(diǎn)。一般地,函數思想是構造函數從而利用函數的性質(zhì)解題,經(jīng)常利用的性質(zhì)是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。
在解題中,善于挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質(zhì),是應用函數思想的關(guān)鍵。對所給的問(wèn)題觀(guān)察、分析、判斷比較深入、充分、全面時(shí),才能產(chǎn)生由此及彼的聯(lián)系,構造出函數原型。另外,方程問(wèn)題、不等式問(wèn)題和某些代數問(wèn)題也可以轉化為與其相關(guān)的函數問(wèn)題,即用函數思想解答非函數問(wèn)題。
函數知識涉及的知識點(diǎn)多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點(diǎn)。
我們應用函數思想的幾種常見(jiàn)題型是:遇到變量,構造函數關(guān)系解題;有關(guān)的不等式、方程、最小值和最大值之類(lèi)的問(wèn)題,利用函數觀(guān)點(diǎn)加以分析;含有多個(gè)變量的數學(xué)問(wèn)題中,選定合適的主變量,從而揭示其中的函數關(guān)系。
實(shí)際應用問(wèn)題,翻譯成數學(xué)語(yǔ)言,建立數學(xué)模型和函數關(guān)系式,應用函數性質(zhì)或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問(wèn)題也可以用函數方法解決。
引起分類(lèi)討論的原因主要是以下幾個(gè)方面:
① 問(wèn)題所涉及到的數學(xué)概念是分類(lèi)進(jìn)行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類(lèi)討論題型可以稱(chēng)為概念型。
② 問(wèn)題中涉及到的數學(xué)定理、公式和運算性質(zhì)、法則有范圍或者條件限制,或者是分類(lèi)給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類(lèi)討論題型可以稱(chēng)為性質(zhì)型。
③ 解含有參數的題目時(shí),必須根據參數的不同取值范圍進(jìn)行討論。如解不等式ax>2時(shí)分a>0、a=0和a<0三種情況討論。這稱(chēng)為含參型。
另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過(guò)分類(lèi)討論,保證其完整性,使之具有確定性。
進(jìn)行分類(lèi)討論時(shí),我們要遵循的原則是:分類(lèi)的對象是確定的,標準是統一的,不遺漏、不重復,科學(xué)地劃分,分清主次,不越級討論。其中最重要的一條是“不漏不重”。
解答分類(lèi)討論問(wèn)題時(shí),我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類(lèi)標準,正確進(jìn)行合理分類(lèi),即標準統一、不漏不重、分類(lèi)互斥(沒(méi)有重復);再對所分類(lèi)逐步進(jìn)行討論,分級進(jìn)行,獲取階段性結果;最后進(jìn)行歸納小結,綜合得出結論。
參考資料:搜狗百科-數學(xué)思想方法
1、每份數*份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數*倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數= 1倍數
3、速度*時(shí)間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度
4、單價(jià)*數量=總價(jià) 總價(jià)÷單價(jià)=數量 總價(jià)÷數量=單價(jià)
5、工作效率*工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間
工作總量÷工作時(shí)間=工作效率
6、加數+加數=和 和-一個(gè)加數=另一個(gè)加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數*因數=積 積÷一個(gè)因數=另一個(gè)因數
9、被除數÷除數=商 被除數÷商=除數 商*除數=被除數
小學(xué)數學(xué)圖形計算公式
1、正方形:C周長(cháng) S面積 a邊長(cháng) 周長(cháng)=邊長(cháng)*4C=4a 面積=邊長(cháng)*邊長(cháng)S=a*a
2、正方體:V:體積 a:棱長(cháng) 表面積=棱長(cháng)*棱長(cháng)*6 S表=a*a*6
體 積=棱長(cháng)*棱長(cháng)*棱長(cháng) V=a*a*a
3、長(cháng)方形:
C周長(cháng) S面積 a邊長(cháng) 周長(cháng)=(長(cháng)+寬)*2 C=2(a+b) 面積=長(cháng)*寬 S=ab
4、長(cháng)方體
V:體積 s:面積 a:長(cháng) b: 寬 h:高
(1)表面積(長(cháng)*寬+長(cháng)*高+寬*高)*2 S=2(ab+ah+bh)
(2)體積=長(cháng)*寬*高 V=abh
5、三角形
s面積 a底 h高 面積=底*高÷2 s=ah÷2
三角形高=面積 *2÷底
三角形底=面積 *2÷高
6、平行四邊形:s面積 a底 h高 面積=底*高 s=ah
7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)*高÷2 s=(a+b)*h÷2
8 圓形:S面 C周長(cháng) ∏ d=直徑 r=半徑
(1)周長(cháng)=直徑*∏=2*∏*半徑 C=∏d=2∏r
(2)面積=半徑*半徑*∏
9、圓柱體:v體積 h:高 s:底面積 r:底面半徑 c:底面周長(cháng)
(1)側面積=底面周長(cháng)*高
(2)表面積=側面積+底面積*2
(3)體積=底面積*高
(4)體積=側面積÷2*半徑
10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積*高÷3
總數÷總份數=平均數
和差問(wèn)題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問(wèn)題
和÷(倍數-1)=小數
小數*倍數=大數
(或者 和-小數=大數)
差倍問(wèn)題
差÷(倍數-1)=小數
小數*倍數=大數
(或 小數+差=大數)
植樹(shù)問(wèn)題
1、非封閉線(xiàn)路上的植樹(shù)問(wèn)題主要可分為以下三種情形:
⑴如果在非封閉線(xiàn)路的兩端都要植樹(shù),那么:
株數=段數+1=全長(cháng)÷株距-1
全長(cháng)=株距*(株數-1)
株距=全長(cháng)÷(株數-1)
⑵如果在非封閉線(xiàn)路的一端要植樹(shù),另一端不要植樹(shù),那么:
株數=段數=全長(cháng)÷株距
全長(cháng)=株距*株數
株距=全長(cháng)÷株數
⑶如果在非封閉線(xiàn)路的兩端都不要植樹(shù),那么:
株數=段數-1=全長(cháng)÷株距-1
全長(cháng)=株距*(株數+1)
株距=全長(cháng)÷(株數+1)
2、封閉線(xiàn)路上的植樹(shù)問(wèn)題的數量關(guān)系如下
株數=段數=全長(cháng)÷株距
全長(cháng)=株距*株數
株距=全長(cháng)÷株數
盈虧問(wèn)題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據《信息網(wǎng)絡(luò )傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個(gè)月內通知我們,我們會(huì )及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習?shū)B(niǎo). 頁(yè)面生成時(shí)間:2.934秒